УДК 548.3 538.91

КАСКАДНАЯ ЭМИССИЯ ФОТОНОВ В ЛЮМИНОФОРАХ И СТЕРЕОАТОМНЫЙ АНАЛИЗ

Исаев Владислав Андреевич д.физ.-мат. н., профессор

Копытов Геннадий Филиппович д.физ.-мат. н., профессор

ЛебедевАндрей Валерьевич инженер

Плаутский Павел Геннадьевич инженер Кубанский государственный университет, Краснодар, Россия

Для ряда кристаллических фторидов и кислородосодержащих соединений, активированных ионами празеодима выявлена связь степени сферичности полиэдра Вороного-Дирихле G₃ с возможностью того или иного соединения демонстрировать первую ступень каскадной люминесценции ионов Pr^{3+} . Установлено, что у соединений LaZr₃F₁₅ и BaSiF₆, демонстрирующих каскадную люминесценцию, с уровнем ${}^{1}S_{0}$ расположенным ниже дна 5d-зоны, значение параметра G₃ наименьшее среди исследуемых соединений

Ключевые слова: ЛЮМИНОФОР, КАСКАДНАЯ ЛЮМИНЕСЦЕНЦИЯ, ПРАЗЕОДИМ, СТЕРЕОМЕТРИЯ, ЛИГАНД UDC 548.3 538.91

CASCADE PHOTON EMISSION IN LUMINOPHORES AND STEREOATOMIC ANALYSIS

Isaev Vladislav Andreevich Dr.Sci.Phys.-Math., professor

Kopytov Gennadiy Filippovich Dr.Sci.Phys.-Math., professor

Lebedev Andrey Valeryevich engineer

Plautskiy Pavel Gennadyevich engineer Kuban State University, Krasnodar, Russia

The relation between degree of sphericity of the Voronoi-Dirichlet's polyhedron G_3 and the ability to demonstrate the first stage of the cascade luminescence of Pr^{3+} for several crystalline fluorides and oxygen-containing compounds was revealed. It was found that $LaZr_3F_{15}$ and $BaSiF_6$, with energy level ${}^{1}S_0$ located below the bottom of 5d-band, which demonstrate cascade luminescence have the smallest value of G_3 among investigated compounds

Keywords: LUMINOPHOR, CASCADE LUMINESCENCE, PRASEODYMIUM, SOLID STEREOMETRY, LIGAND

Большое значение для развития квантовой электроники и ee многочисленных ответвлений имеет поиск и детальное исследование новых перспективных материалов, обладающих совокупностью заданных оптических, спектрально-люминесцентных и физико-химических свойств, позволяющих, с одной стороны, значительно улучшить параметры существующих устройств, а с другой – создать элементы принципиально нового типа. Получение материалов с необходимыми свойствами требует изучения фазовых диаграмм, разработку способов синтеза и роста, свойств, исследования различных что приводит К значительным финансовым и временным затратам. Поэтому принципиальное значение приобретают работы, направленные на разработку методов прогнозирования материалов с необходимым набором свойств.

Повышенный интерес к люминофорам и рост исследовательской деятельности в этом направление объясняется возрастающим год от года техническим значением их в различных областях науки и техники. Наиболее широкое применение В последние годы получили люминесцентные лампы дневного света, в которых осуществляется преобразование ультрафиолетового излучения от ртутного разряда в видимое излучение люминофором, нанесенным на внутреннюю стеклянной трубки. Однако поверхность В связи с тем, ЧТО В люминесцентных лампах присутствует ртуть, что делает их экологически вредными как при производстве, так и в утилизации, наметилась тенденция к замене ртути в люминесцентных лампах. Кроме того, давление паров ртути при комнатной температуре недостаточно высокое, вследствие чего устойчивое горение лампы происходит не сразу же после включения, что крайне нежелательно для ламп дневного света и делает невозможным использование ртутного разряда в панелях плазменных дисплеев. Альтернативой ртути были предложены благородные газы, в частности смесь газов неона и ксенона. Однако простая замена ртутного разряда на ксеноновый разряд невозможна, так как спектры возбуждения люминофоров, разработанных для ртутного разряда не согласуются со спектром излучения Ne-Xe-разряда, максимум полосы излучения которого приходится на 170 нм, что значительно короче длины волны ртутного разряда l = 254 нм. Это обстоятельство выдвигает более жесткие требования к люминофорам для ламп с Ne-Xe-разрядом, так как прямое преобразование одного кванта света с длиной волны 170 нм в квант видимого излучения с $l \approx 510$ нм энергетически не эффективно. Энергетический выход при получении одного кванта видимого диапазона при возбуждении одним квантом вакуумного ультрафиолета очень мал

(предел составляет 27%). Проведенные исследования показали, что такой эффект может быть достигнут в кристаллических средах, активированных ионами празеодима. Однако для наблюдения так называемой каскадной люминесценции, когда возбужденный в высокоэнергетическое состояние ион переходит в основное состояние, излучая два фотона видимого диапазона, необходимо, чтобы ${}^{1}S_{0}$ – уровень Pr^{3+} был расположен ниже дна 5d-зоны. Так как радиальное распределение 5d-орбиталей выходит за рамки 5s²6p⁶-оболочек, то положение 5d-уровней весьма чувствительно к кристаллическому полю, т.е. к химической природе лигандов и их координации вокруг иона Pr³⁺. В связи с этим особое значение приобретают научно-исследовательские работы, направленные на изучение спектрально-люминесцентных и структурных свойств широкого круга неорганических материалов с целью выявления закономерностей формирования структуры энергетических уровней.

Применение кристаллохимического подхода, основанного на установлении связи состав-структура-свойство, позволяет сократить путь от соединения к материалу, пригодному для изготовления оптических элементов приборов и устройств. Однако в рамках классической кристаллохимии атомы в кристаллах рассматриваются как жесткие сферы Соотношение определенного радиуса. шаров различного радиуса определяется химическим и стереохимическим составом вещества. При этом атомам одного и того же химического элемента приписывается не ОДНО, а несколько значений кристаллохимических радиусов, соответствующих разным типам связи. Анализ распределения электронной области плотности вокруг атомов показывает, что пространства, отвечающие в структуре кристаллов отдельным атомам, напоминает многогранник. Приближением, которое позволяет установить форму этого многогранника, является метод полиэдров Вороного-Дирихле. Характеристики полиэдров Вороного-Дирихле в сочетании с методом

пересекающихся сфер позволяют расширить область применения кристаллохимического подхода для выявления закономерностей составструктура-свойство.

Полиэдр Вороного-Дирихле любого атома в структуре некоторого кристалла можно охарактеризовать следующими важнейшими параметрами [1, 2]: V_{ПВД} – объем полиэдра; R_{CД} – радиус сферы, объем которой равен объему полиэдра Вороного-Дирихле; N_f – число граней полиэдра; D_A – смещение ядра атома из геометрического центра тяжести его полиэдра Вороного-Дирихле; G₃ – безразмерная величина второго момента полиэдра Вороного-Дирихле, характеризующая степень его сферичности. Последняя величина вычисляется по формуле:

$$G_{3} = \frac{1}{3} \frac{\frac{1}{Z} \sum_{i=1}^{Z} \int_{\Pi(p_{i})} r_{i}^{2} dV[\Pi(p_{i})]}{\left(\frac{1}{Z} \sum_{i=1}^{Z} V[\Pi(p_{i})]\right)^{\frac{5}{3}}},$$
(1)

где

Z – число базисных атомов в элементарной ячейке;

r_i – расстояние от точки полиэдра Вороного-Дирихле до соответствующего ему атома p_i.

Синтез и спектрально-люминесцентные исследования фторидных и кислородосодержащих люминофоров

В работах[3-13,14]сообщается о синтезе и проведенных исследованиях спектров люминесценции следующих кристаллических фторидов и сложных оксидов, активированных ионами Pr^{3+} : CaSO₄, BaSO₄, SrSO₄, SrAl₁₂O₁₉, LaAlO₃, SrB₄O₇, LaMgAl₁₁O₁₉, YAlO₃, Y₂SiO₅, LiSrAlF₆, SrAlF₅, SrF₂, SrClF, LaF₃, YF₃, KMgF₃, LaZr₃F₁₅, BaSiF₆, SrB₄O₇, CaSO₄, SrSO₄, BaSO₄, BaF₂ и LaZr₃F₁₅. Большая часть из них была синтезирована на кафедре экспериментальной физики КубГУ.

Спектрально-люминесцентные измерения выполнялись на комплексе, блок–схема которого содержит рентгеновскую трубку, монохроматор и регистратор. Люминесценция возбуждалась рентгеновским излучением (35 кВ, 25 мА) и регистрировалась в диапазоне 200 – 750 нм.

Излучение рентгеновской трубки направлялось на образец. Люминесцентное излучение через входную щель монохроматора МДР–23 направлялось на дифракционную решетку (число штрихов на миллиметр-1200, рабочая область 200-1000 нанометров). Из выходной щели монохроматора излучение попадало на ФЭУ-100. Затем электрический сигнал через АЦП подавался на ЭВМ.

Съемка спектров люминесценции осуществлялась при комнатной температуре. На рисунке 1 приведен спектр люминесценции Y_{1-x}Pr_xAlO₃.

Как видно из спектра люминесценции, в ультрафиолетовой области преобладает широкая структурная полоса люминесценции в области 250-350 нм (эта полоса связана с межконфигурационными 5d \rightarrow 4f переходами Pr^{3+}). В видимой области спектра наблюдаются линии, которые соответствуют переходам ${}^{3}P_{0} \rightarrow {}^{3}H_{4}$ (486 нм), ${}^{3}P_{0} \rightarrow {}^{3}F$ (вблизи 600 нм).

Рисунок 1. Спектр люминесценции $Y_{1-x}Pr_xAlO_3$

Каскадная люминесценция регистрировалась в LiSrAlF₆: \Pr^{3+} (рис. 2). Линии 403 и 487 нм принадлежат ${}^{1}S_{0} \rightarrow {}^{1}I_{6}$ и ${}^{3}P_{0} \rightarrow {}^{3}H_{4}$ переходам соответственно. В УФ области спектра присутствуют также слабые линии, за которые ответственны переходы с ${}^{1}S_{0}$ -уровня на ${}^{3}F_{4}$ (248 нм), ${}^{1}G_{4}$ (268 нм) и ${}^{1}D_{2}$ (330 нм). Длинноволновые линии вблизи 600 нм принадлежат переходам с уровня ${}^{3}P_{0}$ на уровни ${}^{3}F$ -терма.

Рисунок 2. Спектр люминесценции LiSrAlF₆: Pr^{3+}

Спектр люминесценции SrFCl: Pr^{3+} (рис. 3) представлен широкой полосой в УФ-области с $\lambda = 310$ нм и линиями в видимой, которые соответствуют переходам и ${}^{3}P_{0} \rightarrow {}^{3}H_{4}$ (486 нм), ${}^{3}P_{0} \rightarrow {}^{3}F$ (вблизи 600 нм).

Рисунок 3. Спектр люминесценции SrFCl: Pr^{3+}

Полученный в результате исследований спектр люминесценции (рисунок 4) LaF₃: \Pr^{3+} отличается от спектра, приведенного в [15].

Рисунок 4. Спектр люминесценции LaF₃: Рг³⁺

Отличие спектров объясняется тем, что на рис.4 представлен спектр люминесценции $P\Gamma^{3+}$ при его концентрации 1 моль. %, а на рис. 2 – при концентрации 0.1 моль. %. Таким образом, наблюдается концентрационная зависимость интенсивности перехода ${}^{1}S_{0} \rightarrow {}^{1}I_{6}$ в LaF₃: $P\Gamma^{3+}$.

Положение нижнего 5d-уровня относительно основного состояния ³H₄ иона Pr³⁺ в различных кристаллических матрицах

Метод оценки положения нижнего 5d-уровня относительно основного состояния 3 Н₄ иона Pr³⁺ в различных кристаллических матрицах был предложен в работах [16-19]. Этот метод основан на выявленной корреляции между положением 5d-уровня иона Ce³⁺ и расположением этого уровня для ионов Ln³⁺ других лантаноидов. Согласно [17], энергетический зазор между основным f-состоянием и нижним d-состоянием произвольного трехвалентного иона редкоземельного элемента может быть рассчитан по соотношению:

$$\mathbf{E}_{f-d}(\mathbf{Ln}) = 49340 - \mathbf{D}(\mathbf{A}) - \Delta \mathbf{E}^{\mathbf{Ln}.\mathbf{Ce}},$$
(2)

где 49340 см⁻¹ – энергия перехода ${}^{2}F_{5/2}$,4f \rightarrow 5d_{min} в свободном ионе Ce³⁺; D(A) – величина «красного сдвига», характеризующая силу кристаллического поля в данном соединении A; $\Delta E^{Ln,Ce}$ – разность между

энергиями d—f-переходов в ионах Ln³⁺ по сравнению с переходом для Ce³⁺ (экспериментальные данные). Обобщение опытных спектральных данных для ионов Ce³⁺ и Pr³⁺ среди 450 кристаллов позволило автору [17] сделать вывод о том, что разность энергий $\Delta E^{Pr,Ce}$ переходов ³H₄,4f—5d_{min} в ионе Pr³⁺ и ²F_{5/2},4f—5d_{min} в ионе Ce³⁺ для различных матриц остается практически постоянной и составляет 12240 ± 750 см⁻¹. Таким образом, уравнение (2) для иона празеодима можно переписать в виде:

$$E_{f-d}(\Pr) = 61580 - D(A)$$
 (3)

Уравнение (3) по величине «красного сдвига» D(A) позволяет определить положение 5d-уровня относительно основного состояния ${}^{3}H_{4}$ иона Pr³⁺ в различных кристаллических матрицах и выделить из них перспективные для регистрации ${}^{1}S_{0}$ -люминесценции. С учетом того, что положение ${}^{1}S_{0}$ -уровня относительно основного состояния ${}^{3}H_{4}$ иона Pr³⁺ составляет 46730 см⁻¹, для выполнения условий (2) или (3) необходимо, чтобы D(A) не превышало 14850 см⁻¹.

Анализ экспериментальных данных позволил авторам уточнить соотношение (3), в котором не был учтен Стоксов сдвиг, который в основном определяется свойствами лигандов. С учетом Стоксова сдвига уравнение (3) принимает вид:

$$E_{f-d}(\Pr) = 61580 - D(A) - \Delta S \tag{4}$$

Таким образом, для наблюдения ${}^{1}S_{0}$ -люминесценции необходимо, чтобы величина (D(A)+ Δ S) не превышала 14850 см⁻¹.

Стереоатомный анализ структуры исследуемых соединений

Прежде чем перейти непосредственно к стереоатомному анализу структуры исследуемых соединений, определим особенности окружения атомов Pr атомами фтора и кислорода. Анализ 27 соединений, для которых имеются структурные данные в базах для неорганических соединений [20]

показал, что по отношению к атомам фтора атомы празеодима проявляют координационные числа от 6 до 12. Причем наиболее характерными являются координационные числа 9 (37.5%), 8 (31.3 %) и 10 (18.8 %). Полиэдры Вороного-Дирихле большинства атомов Pr искажены, что хорошо согласуется с низкой сайт-симметрией позиций, чаще всего занимаемых атомами металла – C₁, C₈ и C₂. Объем полиэдров изменяется незначительно в пределах от 11.110 до 12.658 Å³. Степень искажения координационной сферы можно оценить с помощью безразмерного сферичности характеризующего степень параметра G3. полиэдра Вороного-Дирихле. Его увеличение (т.е. увеличение отклонения от сферичности), согласно [21], ведет к преимущественной направленности (ковалентности) химической связи Pr-F. В нашем случае G₃ изменяется от 7.73•10⁻³ для PrN_{0 37}F_{1 93} до 8.289•10⁻³ для Pr₂SbO₅F.

Соединение $PrN_{0.37}F_{1.93}$ представляет интерес, т.к. его структурные свойства выпадают из указанных выше закономерностей. Согласно [22] оно кристаллизуется в кубической сингонии с пространственной группой**Fm**³m, причем атомы Pr занимают высокосимметричную позицию – O_h, объем полиэдра Вороного-Дирихле равен 7.904 Å, а G₃=7.73•10⁻³.

Аналогичные исследования для координационных полиэдров PrO_n в структуре кристаллов проведены в работе [21]. Анализ особенностей окружения атомов Pr атомами кислорода в структуре 235 соединений показал, что по отношению к атомам кислорода атомы Pr валентности III проявляют координационные числа от 5 до 12, а Pr валентности IV – от 5 до 9. Причем наиболее характерным является 8. Длина связей Pr-O в координационных полиэдрах PrO_n изменяется в широких пределах от 2.06 до 2.93 Å. Однако, несмотря на значительную вариацию межатомных расстояний, объем полиэдров Вороного-Дирихле при фиксированном валентном состоянии остается практически постоянным (13.06 и

11.87 Å³для атомов Pr^{III} и Pr^{IV} соответственно). Полиэдры Вороного-Дирихле большинства атомов Pr искажены, что хорошо согласуется с низкой сайт-симметрией позиций, чаще всего занимаемых атомами металла – C₁, C_s и C₂. Оценка степени сферичности полиэдра Вороного-Дирихле с помощью G₃ показывает, что с ростом КЧ атомов металла происходит закономерное уменьшение величин G_3 их полиэдров ВД, то есть равномерность окружения увеличивается. Этот факт, по мнению авторов, свидетельствует о том, что повышение КЧ атомов празеодима сопровождается симбатным ростом вклада ненаправленных (ионных) взаимодействий Рг-О в формирование координационной сферы атомов металла. При КЧ < 8 величина G₃ становится больше 0.082 и взаимодействия Рг-О имеют преимущественно направленный (ковалентный) характер.

Данное исследование [23] предпринято с целью демонстрации принципиально новых возможностей, которые открывают современные методы стереоатомного анализа, опирающиеся на использование характеристик полиэдров Вороного-Дирихле (ВД) атомов в структуре кристаллов.

С целью изучения структурных особенностей окружения атома празеодима, рассмотрим структурные характеристики атомов В исследуемых нами соединениях, которые замещаются празеодимом при активации. Отбор из баз данных [20] первичной кристаллоструктурной информации осуществлялся с помощью комплекса структурнотопологических программ TOPOS [1]. Расчеты стереоатомных характеристик атомов также проводились, с использованием программ Dirichlet и AutoCN указанного выше комплекса программ. В таблицах 1 и 2 приведены рассчитанные данные для фторидов и кислородосодержащих соединений соответственно. Значения «красного сдвига» D(A) приведены по данным работы [17]. Величины D(A), помеченные звездочкой (*), вычислены с помощью уравнения (5).

Соединение	Х	SC	КЧ	V _{ПВД} , Å ³	R _{sd}	G ₃	D(A)	
LiSrAlF ₆	Sr1	C_1	6	13.549	1.479	0.081330761	12165	
SrAlF ₅	Sr1	C_1	9	13.762	1.487	0.080561236	11007	
	Sr2	C_1	9	13.692	1.484	0.080691434		
	Sr3	C_1	8	14.266	1.505	0.081413560	1100/	
	Sr4	C_1	9	13.519	1.478	0.080992147		
SrF ₂	Sr1	O_h	8	13.676	1.484	0.082548171	15261	
SrClF	Sr1	C_{4v}	9	17.690	1.616	0.083043613	16257*	
LaF ₃	La1	C_2	9	12.151	1.426	0.079689264	8751	
YF ₃	Y1	Cs	9	9.825	1.329	0.080408983	9915	
KMgF ₃	K1	O_h	12	15.877	1.559	0.078745082	6605	
LaZr ₃ F ₁₅	La1	C_s	9	11.765	1.411	0.079793997	8885*	
	La2	C_s	9	11.477	1.399	0.079687037		
BaSiF ₆	Ba1	D _{3d}	12	15.890	1.560	0.078505002	6013*	

Таблица 1. Стереоатомные характеристики фторидов

Как отмечалось выше, степень искажения координационной сферы позиций, замещаемых атомами празеодима, описывается двумя основными параметрами G₃ и D_a (G₃ – безразмерная величина, характеризующая степень сферичности полиэдра ВД и D_a- величина смещения ядра атома из центра тяжести его полиэдра ВД). Имеющиеся данные показывают, что у фторидов максимальное значение параметр G₃ имеет позиция атома Sr (G₃=8.304•10⁻², КЧ=9) в SrFCl, а минимальное – позиция атома К (G₃=7.875•10⁻², КЧ=12) в КМgF₃ и Ва (G₃=7.850•10⁻², КЧ=12) в BaSiF₆. При этом ¹S₀-люминесценция празеодима наблюдается для соединений LiSrAlF₆, SrAlF₅, LaF₃, YF₃, KMgF₃, LaZr₃F₁₅ и BaSiF₆, а для SrF₂ и SrClF она отсутствует. Таким образом, степень сферичности полиэдра Вороного-Дирихле определяет возможность того или иного соединения каскадной демонстрировать первую ступень люминесценции для празеодима. Более того, для фторидов просматривается связь между параметром G₃ и величиной красного сдвига D(A). График зависимости на

рисунке 5, построенный по данным таблицы 1, показывает, что D(A) практически линейно зависит от параметра G₃, которая описывается уравнением:

$$D(A) = 22545 \cdot G3 - 170965$$
(5)

Рисунок 5. Зависимость «красного сдвига» D(A) от параметра G₃ Значения «красного сдвига» для соединений SrClF, LaZr₃F₁₅ и BaSiF₆

в работе [17] отсутствуют. Они рассчитаны по уравнению (5) и составляют 15261, 8885 и 6013 соответственно. Следовательно, соединения LaZr₃F₁₅ и BaSiF₆ являются перспективными для демонстрации первой ступени каскадной люминесценции празеодима, что и наблюдается для LaZr₃F₁₅ [24].

Величина смещения ядер атомов Sr в SrF₂, K в KMgF₃ и Ba в BaSiF₆ из геометрического центра тяжести их полиэдров BД (D_a) равна нулю. Малые смещения ядер атомов, замещаемых празеодимом, наблюдаются в YF₃ (0.015 Å), LaZr₃F₁₅ (0.014 Å и 0.016 Å) и LaF₃ (0,018 Å). Они значительны для атомов Sr в SrAlF₅ (0.033 Å, 0.065 Å, 0.069 Å и 0.097 Å) и достигают максимального значения среди исследуемых фторидов для Sr в SrClF (0.229 Å). Если рассматривать геометрический центр тяжести полиэдра BД и позицию ядра центрального атома как положения центров тяжести соответственно отрицательных и положительных зарядов, то $D_a \approx 0$ свидетельствует об отсутствии заметной анизотропии электрического поля в области ядра атома. Таким образом, для соединения SrClF должна наблюдаться значительная анизотропия электрического поля в области ядра атома.

Таблица 2. Стереоатомные	характеристики	кислородосодержащих
соединений		

Соединение	Х	SC	КЧ	V _{ПВД} , Å ³	R _{sd}	G ₃	D(A)
$Y_3Al_5O_{12}$	Y1	D_2	8	11.356	1.394	0.081786923	26654
LaMgAl ₁₁ O ₁₉	La1	D _{3h}	12	14.584	1.516	0.079015017	12303
$SrAl_{12}O_{19}$	Sr1	D _{3h}	12	15.466	1.546	0.078984477	11050
Y(AlO ₃)	Y1	Cs	8	11.434	1.398	0.080894306	16537
La(AlO ₃)	La1	O_h	12	13.646	1.482	0.078789957	18122
$Sr(B_4O_7)$	Sr1	C _s	9	14.613	1.517	0.078860439	14080
Y ₂ (SiO ₄)O	Y1	C ₁	8	10.397	1.354	0.091817111	22201
	Y2	C_1	7	14.568	1.515	0.090123378	22301
CaSO ₄	Ca1	C_{2v}	8	12.726	1.448	0.081395373	15556
BaSO ₄	Ba1	Cs	10	17.716	1.617	0.079263702	-
SrSO ₄	Sr1	Cs	12	13.814	1.488	0.081382535	-

Максимальным значением параметра G_3 у кислородосодержащих соединений (9.182•10⁻²) обладает атом Y_1 (КЧ = 8) в Y_2SiO_5 , а наименьшее G_3 (7,886•10⁻² и 7,898•10⁻²) принадлежит атомам Sr (КЧ = 7) в SrB₄O₇ и в SrAl₁₂O₁₉ (КЧ = 12). Последние два соединения, активированных ионами празеодима, демонстрируют первую ступень каскадной люминесценции, т.е. переход ${}^1S_0 \rightarrow {}^1I_6$.

Величина смещения ядер атомов Sr в SrAl₁₁O₁₉, La в LaAlO₃ и LaMgAl₁₁O₁₉, а также Y в Y₃Al₅O₁₂ из геометрического центра тяжести их полиэдров ВД (D_a) равна нулю. Она значительна для атомов Sr в SrSO₄SrB₄O₇ (0.063 Å и 0.057 Å) и достигает максимального значения среди исследуемых кислородосодержащих соединений для Y в Y₂SiO₅ (0.161 Å). Таким образом, для соединения Y₂SiO₅, как и у SrClF среди

фторидов, должна наблюдаться значительная анизотропия электрического поля в области ядра атома.

Как отмечалось выше, трехвалентный празеодим в координационных объем ПВД полиэдрах PrO_n занимает позиции, которых является 13.06 Å^3 . постоянной величиной, равной В исследуемых кислородосодержащих соединениях объем ПВД замещаемых празеодимом атомов варьируется в пределах от 10.397 Å³ для Y (KЧ=8) в Y₂SiO₅, до 17.716 Å³ для BabBaSO₄. Поэтому для параметра G₃ в виде сомножителя введем поправку, равную отношению среднего объема ПВД празеодима к объему ПВД замещаемого атома в исследуемых кислородосодержащих соединениях. Результаты расчетов с учетом поправки приведены в таблице 3.

Для кислородосодержащих соединений, как и для фторидов, просматривается связь между параметром G_3 и величиной «красного сдвига» D(A). Однако, в отличие от случая фторидов, график зависимости (рисунок 6), построенный по данным таблицы 3, показывает, что D(A) растет с увеличением G_3 , но зависимость имеет характер тенденции.

Таблица 3. Стереоатомные характеристики кислородосодержащих соединений с учетом поправки

Соединение	X	V _{ПВД} , Å ³	Vcp/ V _{ПВД}	G ₃	G ₃ *	D(A)	
$Y_3Al_5O_{12}$	Y1	11.356	1.150	0.081786923	0.09405	26654	
LaMgAl ₁₁ O ₁₉	La1	14.584	0.8955	0.079015017	0.07076	12303	
$SrAl_{12}O_{19}$	Sr1	15.466	0.840	0.078984477	0.06635	11050	
Y(AlO ₃)	Y1	11.434	1.142	0.080894306	0.09238	16537	
La(AlO ₃)	La1	13.646	0.957	0.078789957	0.07540	18122	
$Sr(B_4O_7)$	Sr1	14.613	0.894	0.078860439	0.07053	14080	
V (SO)O	Y1	10.397	1.256	0.091817111	0.11532	22301	
$I_2(SIO_4)O$	Y2	14.568	0.896	0.090123378	0.08075		
CaSO ₄	Ca1	12.726	1.026	0.081395373	0.08351	15556	
BaSO ₄	Ba1	17.716	0.737	0.079263702	0.05842	-	
SrSO ₄	Sr1	13.814	0.945	0.081382535	0.07691	-	

Рисунок 6. Зависимость красного сдвига D(A) от параметра G₃

Тем не менее, именно соединения, активированные ионами празеодима, с наименьшими значениями параметра G_3 демонстрируют в своих спектрах первую ступень каскада люминесценции, т.е. именно для них ${}^{1}S_{0}$ – уровень расположен ниже дна 5d-зоны.

Таким образом, доказано, что именно соединения, активированные ионами празеодима, с наименьшими значениями параметра G_3 , демонстрируют в своих спектрах каскадную люминесценцию, т.е. именно для них 1S_o – уровень расположен ниже дна 5d-зоны.

Литература

- [1] Блатов В.А., Шевченко А.П., Сережкин В.Н. ТОРОЅ комплекс программ для анализа топологии кристаллических структур. //Журн. структ. химии. 1993. Т.34. № 5. с. 183-185.
- [2] Сережкин В.Н., Михайлов Ю.Н., Буслаев Ю.А. Метод пересекающихся сфер для определения координационного числа атомов в структуре кристаллов. //Журн. неорг. химии. 1997. Т. 42. № 12. с. 2036-2077.

- [3] Потапов А.С., Родный П. А., Михрин С. Б., Магунов И. Р. Люминесцентные свойства празеодима в некоторых фторидах. //Физика твердого тела. 2005. Т. 47. № 8. с. 1386–1388.
- [4] Исаев В.А., Аванесов А.Г., Сергиенко Н.Л., Сережкин В.Н. Стереометрические особенности и люминесценция трехвалентного празеодима в галогенидах// Известия высших учебных заведений. Северо-Кавказскийрегион. Естественныенауки. Приложение. № 4. 2005. стр. 25-31.
- [5] Аванесов А.Г., Исаев В.А., Сергиенко Н.Л., Чижевский Д.Ю., Сережкин В.Н. Стереометрическиеособенности и люминесценцияоксидов в Sr_{1-x}Pr_xMgAl₁₁O19, La1-xPrxMgAl₁₁O₁₉, и Y_{1-x}Pr_xAlO₃// Известиявысшихучебныхзаведений. Северо-Кавказскийрегион. Естественныенауки. Приложение. № 4. 2005. стр. 17-22.
- [6] Аванесов А.Г., Исаев В.А., Сергиенко Н.Л., Сережкин В.Н. Люминесценция и особенности структуры некоторых неорганических соединений// Экологический вестник научных центров Черноморского экономического сотрудничества. 2005. №1. стр. 51-56.
- [7] Сергиенко Н.Л., Аванесов А.Г., Исаев В.А. Симметрия лигандов и каскадная люминесценция Pr³⁺. В кн.: Тезисы докладов XI семинара совещания «Оптика и спектроскопия конденсированных сред». Краснодар, 18-23 сентября 2005 г. К. 2005. стр. 51-52.
- [8] Сережкин В.Н., Исаев В.А., Аванесов А.Г., Сергиенко Н.Л. Стереометрические особенности LiCaAlF₆, NaSrAlF₆, CaAlF₅, Ca₂AlF₇, YF₃, LiYF₄, SrF₂ и CaF₂// Известия высших учебных заведений. Северо-Кавказскийрегион. Естественныенауки. Приложение. № 5. 2005. стр. 58-61.
- [9] Kuleshov N. V., Mikhailov V. P., Minkov B. I., Danger T., Sandrock T., Huder G. Spectroscopy, excited-state absorption and stimulated emmission in Pr³⁺– doped Gd₂SiO₅ and Y₂SiO₅ crystals. //Journal of Luminescence. 1997. № 71. P. 27–35.
- [10] Vink A. P., van der Kolk E., Dorenbos P., van Eijk C. W. E. Opposite parity ⁴f_{n-1} ⁵d₁ states of Ce³⁺ and Pr³⁺ in MSO₄ (M = Ca, Sr, Ba). //Journal of Alloys and Compounds. 2002. № 341. P. 338–341.
- [11] Vink A. P. Dorenbos P., van Eijk C. W. E. Observation of the photon cascade emission process under ⁴f₁⁵d₁ and host exsitation in several Pr³⁺–doped materials. //Journal of Solid State Chemistry. 2003. № 71. P. 308–312.

- [12] van der Kolk E., Dorenbos P., van Eijk C.W.E. Vacuum ultraviolet excitation and quantum spliting of Pr³⁺ in LaZrF₇ and LaZr₃F₁₅. //Optics Communications. 2001. № 197. P. 317–326.
- [13] Grzechnik A., Dmitriev V., Weber H.-P., Gesland J.Y., van Smaalen S. LiSrAlF₆ with the LiBaCrF₆-type structure. //J. Phys.: Condens. Matter. 2004. V. 16. P. 3005-3013.
- [14] Pan F., Wang R.-J., Wei J.-Z., Shen G.-Q., Wang X.-Q., Shen D.-Z. The crystal structure and NLO property of strontium tetraborate SrB₄O₇.
 //GaodengXuexiaoHuaxueXuebao. 2001. V. 22. P. 154-158.
- [15] Родный П.А. Каскадная эмиссия фотонов в люминофорах. //Оптика и спектроскопия. 2000. т. 89. № 4. с. 609-616.
- [16] Dorenbos P. The ⁴f_n↔⁴f_{n-1}⁵d transition of the trivalent lanthanides in halogenides and chalcogenides. //Journal of Luminescence. 2000. № 91. P. 91–106.
- [17] Dorenbos P. The 5d level position of trivalent lanthanides in inorganic compounds.//Journal of Luminescence. 2000. № 91. P. 155–176.
- [18] Dorenbos P. 5d-level energies of Ce³⁺ and the crystalline environment. IV Aluminates and "simple" oxides. //Journal of Luminescence. 2002. № 99. P. 283–299.
- [19] Bettinelli M., Moncorge R. Correlation between the 5d-level position of Ce³⁺ and of the other Ln³⁺ ions in solids. //Journal of Luminescence. 2001. № 92. P. 287–289.
- [20] Inorganic crystal structure database. Gmelin-Institut fur AnorganischeChemie& FIC Karlsruhe. 2007.
- [21] Вологжанина А.В., Пушкин Д.В., Сережкин В.Н. Координационные полиэдры PrOn в структуре кристаллов. //Координационная химия. 2005.т. 31. № 1. с. 51-58.
- [22] Vogt T., Schweda E., Laval J. P., Frit B. Neutron Powder Investigation of Praseodymium and Cerium Nitride Fluoride Solid Solutions. //Journal of Solid State Chemistry. 1989. V. 83. P. 324-331.
- [23] Сережкин В.Н., Исаев В.А., Аванесов А.Г. Кристаллохимический анализ матриц празеодим содержащих люминофоров. В кн.: Материалы XVI Всероссийской конференции «Оптика и спектроскопия конденсированных сред». Краснодар. 2008. с. 204-210.
- [24] Dexpert-Ghys J., Ribeiro S.J.L., Dugat P., Avignant D. Crystal structure and luminescence properties of La₃Zr4F₂₅ and alpha-LaZr₃F₁₅. //Journal of Materials Chemistry. 1998. V. 8. P. 1043-1050.