УДК 535.33

ПАРАМЕТРЫ ИНТЕНСИВНОСТИ ИОНОВ НЕОДИМА В КРИСТАЛЛЕ МОЛИБДАТА СТРОНЦИЯ

Исаев Владислав Андреевич д.физ.-мат.н., профессор

Скачедуб Александр Валерьевич аспирант

Клименко Валерий Андреевич аспирант

Плаутский Павел Геннадьевич инженер

Лебедев Андрей Валерьевич инженер *КубГУ, Краснодар, Россия*

Рассчитаны параметры интенсивности ионов Nd³⁺ в монокристалле SrMoO₄, выращенном модифицированным методом Чохральского. Показано изменение значений этих параметров при замене атомов вольфрама W⁶⁺ атомами молибдена Mo⁶⁺ в матрицах SrMeO₄ со структурой шеелита, обусловленной меньшей экранировкой ядра Mo⁶⁺ по сравнению с W⁶⁺

Ключевые слова: НЕОДИМ, ПАРАМЕТРЫ ИНТЕНСИВНОСТИ, РАДИАЦИОННОЕ ВРЕМЯ ЖИЗНИ, КОЭФФИЦИЕНТ ВЕТВЛЕНИЯ ЛЮМИНЕСЦЕНЦИИ UDC 535.33

INTENSITY PARAMETERS OF NEODYMIUM IONS IN STRONTIUM TUNGSTATE CRYSTAL

Isaev Vladislav Andreevich Dr.Sci.Phys.-Math., professor

Skachedub Alexander Valerevich postgraduate student

Klimenko Valery Andreevich undergraduate student

Plautskiy Pavel Gennadevich engineer

Lebedev Andrey Valerevich engineer KubSU, Krasnodar, Russia

Intensity parameters of neodymium ions in doped SrWO₄ monocrystals, grown by modified Czochralski method, are calculated. Changes in the values of these parameters when replacing the tungsten atoms W^{6+} atoms of molybdenum Mo^{6+} in the matrices SrMeO₄ with the scheelite structure due to less screening of the nucleus Mo^{6+} compared with W^{6+} are shown

Keywords: NEODYMIUM, INTENSITY PARAMETERS, RADIATIVE LIFETIME, BRANCHING RATIO OF LUMINESCENCE.

Введение

лазерной Важная современной физики расширение задача спектрального диапазона лазерного излучения, а так же поиск новых перспективных лазерных сред. Области практического применения излучения различных длин волн - лазерные дальномеры, приборы для лазерного зондирования, локации, медицины, адаптивной оптики. Создание активных сред с заданными свойствами требует проведения спектроскопических исследований детальных широкого круга конденсированных систем с редкоземельными ионами. Эти исследования направлены на выявление физической и энергетической структуры центров люминесценции, схем оптических и безызлучательных переходов между уровнями центров, процессов, происходящих в возбуждённом состоянии центров.

Монокристаллы PbWO₄, SrWO₄, SrMoO₄ относящиеся к группе шеелита, имеют большой потенциал для создания источников и преобразователей лазерного излучения. Структура шеелит позволяет введение ионов – активаторов редкоземельных элементов, замещающих собой двухвалентные атомы металлов, безсущественного искажения Эти кристаллы обладают решётки. высокими акустооптическими характеристиками, высокими показателями механической прочности и лучевой стойкости, не являются гигроскопичными. Поэтому кристаллы вольфраматов молибдатов И двухвалентных металловявляются исключительно перспективнымиактивными лазерными средами, а так же ВКР преобразователями электромагнитного излучения.

В данной работе исследовался активированный неодимом кристалл молибдата стронция со структурой шеелита, выращенный модифицированным методом Чохральского, с использованием дополнительного нагревателя в зоне роста. Исследование ростовых условий при использовании данной методики и предложенный способ оптимизации параметров роста подробно описан в статье [1].

Рост кристаллов и методы исследования

Кристалл молибдата стронция, активированный неодимом, был выращен методом Чохральского из платинного тигля в воздушной атмосфере. Скорость вытягивания составляла 3 мм/ч, скорость вращения штока – 40 об/мин. Над тиглем устанавливался платиновый нагреватель сопротивления (детальное описание конструкции теплового узла изложено в [1]). Выращивание производилось на затравки, вырезанные из номинально чистых кристаллов в направлении [100]. По окончании процедуры роста, производился отрыв кристалла от расплава, отжиг в течение 2 часов и охлаждение до комнатной температуры со скоростью 150° С/час.

Для измерений спектров поглощения из цилиндрической части полученного кристалла изготавливались плоскопараллельные пластины, толщиной 2.7 мм, с полированными поверхностями, ориентированные параллельно плоскости [100].

Поляризованные спектры поглощения исследуемого кристаллического образца молибдата стронция регистрировались со спектральным разрешением 0.6нм в области 450– 950 нм при T = 30 к K на спектрофотометре ЛОМО СФ – 256 УВИ приведены на рисунках 1 – 2.

Рисунок 1. σ – спектр поглощения кристалла SrMoO₄: NdNbO₄ at.1%

Рисунок 2. π – спектр поглощения кристалла SrMoO₄: NdNbO₄ ат.1%

Поляризованные спектры поглощения кристаллов вольфраматов стронция состоят из шести групп линий переходов ионов $Nd^{3+}c$ основного состояния ${}^{4}I_{9/2}$ на возбуждённые энергетические уровни иона неодима: ${}^{4}G_{9/2}+{}^{4}G_{7/2}+{}^{2}K_{13/2}$; ${}^{4}G_{5/2}+{}^{2}G_{7/2}$; ${}^{4}F_{9/2}$; ${}^{4}F_{7/2}+{}^{4}S_{3/2}$; ${}^{4}F_{5/2}+{}^{2}H_{9/2}$; ${}^{4}F_{3/2}$ с максимумами поглощения вблизи длин волн 525, 584, 682, 747, 805 и 878 нм соответственно.

Неодим

Активированные трёхвалентными ионами Nd³⁺ кристаллы, наряду с некоторыми другими редкоземельными ионами, являются одними из самых широко используемых лазерных материалов. Схема энергетических уровней и лазерных переходов в ионе неодима изображена на рисунке 3.

Рисунок 3. Схема энергетических уровней и основных лазерных переходов иона Nd³⁺

Диапазон перестройки генерации лазерного излучения для неодима довольно высок, начиная от возможности осуществлять генерацию на высокоэнергетическом переходе²L_{15/2} \rightarrow ⁴I_{9/2}, порождающем электромагнитное излучение с длиной волны порядка 340 нм, до длинноволнового лазерного перехода ⁴F_{3/2} \rightarrow ⁴I_{13/2}, сопровождающегося излучением волны длины порядка 1350 нм.

Диапазон изменения длины волны генерации Nd³⁺практически не зависит от кристаллической матрицы, но значения интегральных интенсивностей и сил осцилляторов ионов неодима в зависимости от выбранной матрицы могут изменяться в 2-3 раза. Заметим, что значения сечений поглощения Nd³⁺ в кристаллах на порядок выше, чем для стёкол, что связано с разницей неоднородного уширения линий. Поэтому выбор конкретной кристаллической матрицы определяется особенностями поставленной задачи.

При малой концентрации неодима квантовый выход излучения с метастабильного уровня ⁴F_{3/2} близок к единице для любой матрицы. Тушение люминесценции существенно проявляется только в

высококонцентрированных образцах. Обычно тушение идёт по кроссрелаксационному типу и усиливается миграцией возбуждений.

Теоретические методы и расчёты

Для расчета интенсивностей вынужденных дипольных переходов необходимо знание всех энергий и собственных функций конфигураций *4fn-1* примесных ионов, а также нечетной части потенциала кристаллического поля, что представляет собой крайне сложную задачу. Применяя методы тензорной алгебры Рака, Джадд [2] и Офельт [3] решили данную проблему следующим образом.

Согласно теории Джадда – Офельта, силы осцилляторов электродипольного перехода определяются следующей формулой:

$$f_{calc}(J \to J') = \frac{8\pi^2 mc}{3h(2J+1)\lambda} \sum_{t=2,4,6} \Omega_t |\langle (S,L)J || U^{(t)} || (S',L')J' \rangle|^2$$

где I и I'-суммарный угловой момент верхнего и нижнего уровней, $\lambda =$ длина волны полосы поглощения, соответствующая переходу $I \rightarrow J'$, c =скорость света, – масса электрона, –заряд электрона, h =постоянная Планка, $\Omega_t =$ параметры Джадда – Офельта, ($\|U^{(t)}\|$) – дважды редуцированные матричные элементы ранга t между электронными состояниями, характеризуемыми квантовыми числами (S, L, J)и (S', L', J').

Характер излучения атомных систем определяется матричным элементом соответствующего перехода. Значения матричных амплитуду вероятности элементовопределяют перехода квантово - механической системы из одного состояния в другое. Если такой матричный элемент ^{U(t)} отличен от нуля, то между состояниями сопровождающиеся системы возможны переходы, дипольным И псевдоквадрупольным излучением [4]. Правила отбора, которым должны удовлетворять волновые функции начального и конечного состояний системы, для того чтобы матричный элемент $U^{(C)}$ сверхчуствительного перехода не обращался в ноль, имеют следующий вид: $\Delta J \leq 2$, $\Delta L \leq 2$. Так же, к сверхчувствительным переходам относятся переходы, у которых значения матричных элементов перехода U_2^2 велики по сравнению с U_4^2 и U_6^2 .

Таблица 1. Значения дважды редуцированных матричных элементов единичного тензорного оператора ранга *t* для неодима

Переход	Длина волны, нм	<i>U</i> ² , отн. ед.	^{U4} , отн. ед.	^{U6} , отн. ед.
${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$	881	0	0.2293	0.0548
${}^4F_{5/2} {\longrightarrow} {}^4I_{9/2}$	809	0.0010	0.2371	0.3972
$^{2}\text{H}_{9/2} \rightarrow ^{4}\text{I}_{9/2}$	803	0.0092	0.0080	0.1155
${}^4F_{7/2} \rightarrow {}^4I_{9/2}$	740	0.0010	0.0423	0.4246
${}^{4}S_{3/2} \rightarrow {}^{4}I_{9/2}$	740	0	0.0027	0.2352
${}^4F_{9/2} {\longrightarrow} {}^4I_{9/2}$	682	0.0009	0.0092	0.0417
$^{2}\text{H}_{11/2} \rightarrow ^{4}\text{I}_{9/2}$	633	0.0001	0.0027	0.0104
${}^{4}G_{5/2} \rightarrow {}^{4}I_{9/2}$	581	0.8979	0.4093	0.0359
${}^{2}G_{7/2} \rightarrow {}^{4}I_{9/2}$	581	0.0757	0.1848	0.0314
${}^{2}\mathrm{K}_{13/2} \rightarrow {}^{4}\mathrm{I}_{9/2}$	533	0.0069	0.0002	0.0312
${}^{4}G_{7/2} \rightarrow {}^{4}I_{9/2}$	526	0.0550	0.1571	0.0553

U¢) Значения элементов между матричных электронными состояниями, характеризуемыми квантовыми числами (S.L.J) и (S'.L.J'). определены для всех возможных электронных конфигураций [5]. редкоземельных химических элементов Инфракрасные переходы⁴ $F_{5/2} \rightarrow {}^{4}I_{9/2}$ и ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$ определяется значениямиматричных элементов U^4 и U^6 , в то время как переход⁴G_{5/2} \rightarrow ⁴I_{9/2}определяется значениями U² и U⁴.

Измеренные силы осцилляторов могут быть получены из следующего выражения:

$$f_{meas}(J \to J') = \frac{mc^2}{\pi e^2 \lambda N_0} \int k(\lambda) d\lambda$$

где N_0 -концентрация ионов Er^{3+} , $\int k(\lambda) d\lambda$ – интегральный коэффициент поглощения для каждой линии спектра поглощения, который рассчитывается следующим образом:

где – интегральное поглощение, *D* –оптическая плотность, *L* – толщина кристалла.

Концентрация примесных ионов неодима в кристалле составляла 1% от атомов стронция. Численное значение равно1.14×10²⁰см⁻³.

Таблица 1. Интегральное поглощение, измеренные и рассчитанные силы осцилляторов в кристалле SrMoO₄: Nd³⁺, ат. 1%

Возбужденное	2 111	Γ _σ ,	Γ _π ,	Γ_{average} ,	$f_{meas} \times 10^{-6}$,	$f_{calc} \times 10^{-6}$,
состояние	л, нм	$HM \cdot CM^{-1}$	$HM \cdot CM^{-1}$	$HM \cdot CM^{-1}$	отн. ед.	отн. ед.
${}^{4}F_{3/2}$	878	23.61	29.70	25.64	3.75	4.11
${}^{4}F_{5/2} + {}^{2}H_{9/2}$	805	50.15	63.02	54.44	3.10	1.99
${}^{4}F_{7/2} + {}^{4}S_{3/2}$	747	50.71	55.38	52.27	2.93	2.82
${}^{4}F_{9/2}$	682	7.97	3.80	6.58	1.39	1.13
${}^{4}G_{5/2} + {}^{2}G_{7/2}$	584	224.31	212.74	220.45	64.45	64.71
${}^{4}G_{9/2} + {}^{4}G_{7/2} + {}^{2}K_{13/2}$	525	40.66	33.84	38.37	14.42	11.36

Применяя методику, разработанную Джаддом и Офельтом для сил осцилляторов, которые могут быть вычислены с одной стороны из суммы пар произведений квадратов матричных элементов переходов примесного иона $U^{(t)}$, которые слабо зависят от окружения, умноженных на соответствующие им параметры интенсивности Ω_t . С другой стороны силы осцилляторов находятся экспериментально из интегральных спектров поглощения электромагнитного излучения. Затем составляется система линейных уравнений относительно Ω_t и из условия минимума среднего квадратичного отклонения между измеренными и теоретическими

http://ej.kubagro.ru/2013/07/pdf/96.pdf

значениями сил осцилляторов, находятся значения параметров интенсивности Ω_t .

В работе [6]вводится и исследуется параметр спектроскопического

 $X = \frac{\Omega_4}{\Omega_6}$, относительно высокое значение которого, указывает на потенциал материала в качестве использования высокоэффективной лазерной среды.

Кристалл	$\Omega_{2} \times 10^{-20} \text{ cm}^{2}$	$\Omega_{4} \times 10^{-20} \text{ cm}^{2}$	$\Omega_{6} \times 10^{-20} \text{ cm}^{2}$	X	Работа
Nd ³⁺ : SrMoO ₄	15.30	5.72	4.51	1.27	-
Nd ³⁺ : CaMoO ₄	14.65	4.63	3.87	1.20	[7]
Nd ³⁺ : SrWO ₄	14.34	2.65	5.25	0.51	[8]
Nd ³⁺ : PbWO ₄	11.29	2.18	5.11	0.43	[9]

Таблица 2. Параметры Джадда – Офельта ионов Nd³⁺ат. 1%

Несмотря на принадлежность Mo^{6+} и W^{6+} к одной группе периодической системы, близкие ионные радиусы (0.41 и 0.44 Å соответственно[10]), кристаллохимия соединений молибдена и вольфрама имеет свои особенности. Меньшая экранировка ядра Mo^{6+} по сравнению с W^{6+} определяет большую ковалентность связи Mo-O[11]. Это различие проявляется в значениях параметров интенсивности. Так же молибдаты подвержены более легкой растворимости, степени восстановления и в более низких температурах плавления по сравнению с вольфраматами.

Зависимость Ω_2 от разности энергий между $4f^N$ и $4f^{N-1}5d^1$ конфигурациями Tb³⁺исследуется в работе [12]. Увеличение длины волны 4f-5d полосы поглощения Tb³⁺ отражает уменьшение 4f-5dразницы энергий. Это можно приписать увеличению поляризованности лигандов вокруг иона. Большая поляризованность лигандов дает большее перекрытие между орбиталями редкоземельного иона и лиганда, т.е. большую степень ковалентности между редкоземельным ионом и лигандами. Согласно нефелауксетическому эффекту это ведет к расширению частично заполненной 4f оболочки, уменьшая отталкивание

между электронными конфигурациями редкоземельных ионов. В результате, разница энергий между $4f^N$ и $4f^{N-1}5d^1$ конфигурациями уменьшается. Соответственно уменьшение 4f-5d разницы энергий указывает на увеличение ковалентности между редкоземельным ионом и лигандом. Согласно [12], параметр Ω_2 обратно пропорционален разности энергий между $4f^N$ и $4f^{N-1}5d^1$ конфигурациями, то получается, что параметр Ω_2 увеличивается при увеличении ковалентности между редкоземельным ионом и лигандом.

Зависимость параметров Ω_4 и Ω_6 от ковалентности исследуется в работе [13]. Мессбауэревской спектроскопией ¹⁵¹Eu подтверждается, что образуются *о*связи между 2*р*орбиталями лигандов и 6*s*орбиталями редкоземельного иона. В этих связях перекрытие между заполненными 2*р*орбиталями и пустыми 6*s*орбиталями ведет к передаче *о*электрона между лигандом и редкоземельным ионом. В результате плотность 6*s* оболочки увеличивается. 6*s* электроны экранируют 5*d*орбитали или отталкивают 5*d* электроны. Таким образом, увеличение передачи *о* электрона от лиганда дает уменьшение 5*d* электронной плотности редкоземельного иона и уменьшение Ω_6 . Итого, Ω_6 уменьшается при увеличении ковалентности между лигандом и редкоземельным ионом.

Вероятность спонтанного излучения, является характеристикой квантового перехода между уровнями энергии $E_i u E_k$.Используя полученные значения параметров Джадда – Офельта, вычислены вероятности спонтанного излучения для переходов между любой парой мультиплетов ионов Nd³⁺по следующей формуле:

$$A(J \to J') = \frac{64\pi^4 e^2}{3h(2J+1)\lambda^2} \left[\frac{n(n^2+2)^2}{9} S_{ed} + n^3 S_{md} \right]$$
(1)

где^λ – длина волны соответствующего перехода, ⁿ – показатель преломления, который вычислялся из уравнений Зельмеера для

обыкновенного и необыкновенного лучей в кристалле молибдата стронция[14]:

 $n_0^2 = 4.1366 + \frac{76882}{\lambda^2 - 36374}$ $n_e^2 = 4.1569 + \frac{76356}{\lambda^2 - 46482}$

Таблица 3. Значения квадратов показателей преломления обыкновенного и необыкновенного лучей в кристаллеSrMoO₄

λ , мкм	n_o^2	n_e^2
0.525	3.688	3.709
0.584	3.646	3.664
0.682	3.599	3.614
0.747	3.579	3.592
0.805	3.564	3.577
0.878	3.550	3.562

В связи с малой концентрацией примесных ионов неодима в исследуемых кристаллах молибдата стронция, различия в значениях показателя преломления чистого и легированного образцов определяются точностью измерения длины волны электромагнитного излучения, в то время как изменение показателя преломления имеет на порядок меньшую величину. Поэтому уравнение Зельмеера в данном случае берётся без уточняющих поправок.

Результаты вычислений вероятностей переходов между мультиплетами неодима в кристалле молибдата стронция, вычисленных по формуле (1), приведены в таблице 4.

Переход	λ _{, ΗΜ}	A_{ed}, c^{-1}	A_{md}, c^{-1}				
${}^{4}I_{11/2} \rightarrow {}^{4}I_{9/2}$	5405	17.62	0.23				
${}^{4}\mathrm{I}_{13/2} \rightarrow {}^{4}\mathrm{I}_{11/2}$	5000	23.73	0.37				
${}^{4}I_{13/2} \rightarrow {}^{4}I_{9/2}$	2597	38.59	-				
${}^{4}\mathrm{I}_{15/2} \rightarrow {}^{4}\mathrm{I}_{13/2}$	4761	37.27	0.36				
${}^{4}\mathrm{I}_{15/2} {\longrightarrow} {}^{4}\mathrm{I}_{11/2}$	2439	37.37	-				
${}^{4}I_{15/2} \rightarrow {}^{4}I_{9/2}$	1680	12.23	-				
${}^{4}F_{3/2} \rightarrow {}^{4}I_{15/2}$	1851	23.10	-				
${}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$	1333	453.63	-				
${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$	1052	2482.79	-				
${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$	881	2667.05	-				
${}^{4}F_{5/2} \longrightarrow {}^{4}F_{3/2}$	10000	1.219	0.03				
${}^{4}F_{5/2} \rightarrow {}^{4}I_{15/2}$	1562	206.85	-				
${}^{4}F_{5/2} \rightarrow {}^{4}I_{13/2}$	1176	1341.62	-				
${}^{4}F_{5/2} \rightarrow {}^{4}I_{11/2}$	952	1012.04	-				
${}^{4}F_{5/2} \rightarrow {}^{4}I_{9/2}$	809	4691.16	-				

Таблица 4. Вычисленные значения вероятностей переходов между мультиплетами ионов Nd³⁺: SrMoO₄

Электродипольные между И магнитодипольные переходы состояниями 4^{*I*} конфигурации запрещены правилами отбора по четности [15]. Ван Флеком[16] показано, что этот запрет в той или иной степени сниматься счет нецентросимметричных взаимодействий может за редкоземельных ионов с окружением, которые вызывают перемешивание состояний противоположной четности. В качестве таких взаимодействий в кристалле могут быть как статические (нечетные члены в разложении по сферическим гармоникам потенциала кристаллического поля), так и (колебания динамические решетки, обуславливающие нарушения инверсной симметрии) части потенциала кристаллического поля.

Чем больше вероятность спонтанных переходов, тем меньше среднее время жизни атома в возбужденном состоянии. Вероятность спонтанного излучения и излучательное время жизни τ_r зависят друг от друга следующим образом:

$$\tau_r = \frac{1}{\Sigma A(J \to J')}$$

суммирование проводится по всем нижележащим уровням Г.

Вероятность спонтанного излучения тесно связана с параметром – коэффициентом ветвления люминесценции, который определяет количественное соотношение распределения переходов между каналами излучения и имеет следующий вид:

$$\beta(J \to J') = \frac{A(J \to J')}{\Sigma A(J \to J')} = A(J \to J') \cdot \tau_{\gamma}$$

Таблица 5. Вычисленные значения коэффициентов ветвления люминесценции и радиационные времена возбужденных мультиплетов Nd³⁺:SrMoO₄

Переход	λ _{, HM}	β		
${}^{4}I_{11/2} \rightarrow {}^{4}I_{9/2}$	5405	100		
$\tau {}^{4}I_{11/2},$	c	56.03×10 ⁻³		
${}^{4}\mathrm{I}_{13/2} {\longrightarrow} {}^{4}\mathrm{I}_{11/2}$	5000	38.5		
${}^{4}I_{13/2} \rightarrow {}^{4}I_{9/2}$	2597	61.5		
$\tau {}^{4}I_{13/2},$	c	16.0×10 ⁻³		
${}^{4}\mathrm{I}_{15/2} \rightarrow {}^{4}\mathrm{I}_{13/2}$	4761	43.1		
${}^{4}\mathrm{I}_{15/2} \rightarrow {}^{4}\mathrm{I}_{11/2}$	2439	42.8		
${}^{4}I_{15/2} \rightarrow {}^{4}I_{9/2}$	1680	14.0		
$ au {}^{4}\mathrm{I}_{15/2},$	c	11.5×10 ⁻³		
${}^{4}F_{3/2} \rightarrow {}^{4}I_{15/2}$	1851	0.4		
${}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$	1333	8.1		
${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$	1052	44.1		
${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$	881	47.4		
$\tau {}^{4}F_{3/2}, o$	С	0.18×10 ⁻³		
${}^{4}F_{5/2} \rightarrow {}^{4}F_{3/2}$	10000	<0.1		
${}^{4}\mathrm{F}_{5/2} {\longrightarrow} {}^{4}\mathrm{I}_{15/2}$	1562	2.9		
${}^{4}F_{5/2} \rightarrow {}^{4}I_{13/2}$	1176	18.5		
${}^{4}F_{5/2} \rightarrow {}^{4}I_{11/2}$	952	14		
${}^{4}F_{5/2} \rightarrow {}^{4}I_{9/2}$	809	64.7		
$ au$ 4 F _{5/2} , c		0.14×10 ⁻³		

Суммарный коэффициент ветвления люминесценции, при релаксации энергии с некоторых возбуждённых мультиплетов, имеет вероятность больше 100%. Это связано с погрешностью измерений данной величины.

Сечение испускания σ_p энергетического уровня примесного иона, наряду со временем жизни возбужденного состояния τ_r , являются основными параметрами при расчете спектрально - кинетических параметров твердотельного лазера.

$$\sigma_p = \frac{\lambda^4 \beta}{8\pi n_o^2 c \tau_r \Delta \lambda}.$$

где, β – соответствующий коэффициент ветвления люминесценции, n_o – показатель преломления среды, c – скорость света, τ_r – излучательное время жизни уровня, $\Delta \lambda$ – ширина линии испускания на половине ее максимума интенсивности.

Значение величин сечения испускания σ_p и радиационного времени жизни τ_r примесного иона зависит от ряда аспектов, сопутствующих росту кристалла. Структурный аспект учитывает влияние параметров решетки и симметрии окружения активного центра. Спектральный аспект учитывает активатора влияние концентрации на значения вероятностей переходов. Поэтому эффективные излучательных сечения ДЛЯ

неоднородно-уширенных спектральных линий могут существенно отличаться в разных кристаллических матрицах [18].

В работе [17] сообщается, что время жизни люминесценции для уровня ${}^{4}F_{3/2}$ для Nd³⁺:SrMoO₄ составляет ${}^{T}f = 200 \times 10^{-6}$. Рассчитанные излучательные времена жизни ${}^{T}r$ возбуждённых состояний ионов Nd³⁺ и коэффициенты ветвления люминесценции β , которые представляют интерес с точки зрения лазерных свойств исследованных кристаллов вольфраматов стронция, приведены в таблице 6.

Таблица 6.3начения эффективных ширин линий люминесценции, сечений вынужденного излучения, скоростей переходов, коэффициентов ветвления люминесценции и излучательных времен жизни Nd³⁺:SrMoO₄

Переход	λ _{, ΗΜ}	Δλ _{, ΗΜ}	σ _p ×10 ⁻²⁰ , cm ²	A , c^{-1}	β	τ _r ×10 ⁻³ , c	η _, отн. ед.
${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$	881	44	1.37	2667.05	47.4		
${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$	1052	44	2.59	2482.77	44.1	0.2	1 1 2
${}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$	1333	64	0.84	453.63	8.1	0.2	1.12
${}^{4}F_{3/2} \rightarrow {}^{4}I_{15/2}$	1851	61	0.16	23.10	0.4		

Таблица 7.3начения эффективных ширин линий люминесценции, сечений вынужденного излучения, скоростей переходов, коэффициентов ветвления люминесценции и излучательных времен жизни Nd³⁺:SrWO₄[9]

Переход	λ _{, ΗΜ}	<i>Δλ</i> , нм	$\sigma_{p} \times 10^{-20},$ cm ²	A , c ⁻¹	β	$\tau_{r} \times 10^{-3}, c$	η _, отн. ед.
${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$	881	32	2.57	1385.14	37.6		
${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$	1052	20	12.39	1882.31	51.1	0.22	0.92
${}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$	1333	28	3.23	393.60	10.7	0.25	0.85
${}^{4}F_{3/2} \rightarrow {}^{4}I_{15/2}$	1851			20.24	0.6		

Сравнивая значения скоростей переходов A и коэффициентов ветвления люминесценции β с уровня ${}^{4}F_{3/2}$ на нижележащие мультиплеты ионов неодима в кристалле вольфрамата со значениями этих параметров в кристалле молибдата стронция, можно заключить, что замена атомов вольфрама атомами молибдена незначительно сказывается на времени

жизни самого уровня ${}^{4}F_{3/2}$ и увеличивает значения скоростей радиационных переходов с данного уровня. Так же изменяется количественное соотношение переходов между каналами люминесценции (около 10%) с уровня ${}^{4}F_{3/2}$ на нижележащие ${}^{4}I_{x/2}$ мультиплеты.

Заключение

В настоящей работе на основе поляризованных спектров поглощения, снятых при T = 30 ° K, исследуемого кристалла SrMoO₄: NdTaO₄ at.1% вычислены значения сил осцилляторов переходов из основного состояния ⁴I_{9/2} иона неодима на возбуждённые мультиплеты ⁴G_{9/2}+⁴G_{7/2}+²K_{13/2}; ⁴G_{5/2}+²G_{7/2}; ⁴F_{9/2}; ⁴F_{7/2}+⁴S_{3/2};⁴F_{5/2}+²H_{9/2}; ⁴F_{3/2}. Методом Джадда – Офельта определены параметры интенсивности ионов Nd³⁺, значения которых равны $\Omega_2 = 15.30$, $\Omega_4 = 5.72$ и $\Omega_2 = 4.51$.

С использованием значений вышеприведённых параметров интенсивности переходов в исследованных кристаллах вольфраматов стронция рассчитаны излучательные времена жизни τ_r возбуждённых состояний Nd³⁺, коэффициенты ветвления люминесценции и квантовая эффективность переходов между мультиплетами ионов неодима.

Используя данные нашей более ранней работы [8], можно заключить, W⁶⁺атомами вольфрама молибдена $Mo^{6+}B$ что атомов замена матрицеSrMeO₄ со структурой шеелита, активированной ионамиNd³⁺, ведёт к перераспределению электронной плотности между заполненными 2рорбиталями и пустыми бзорбиталями, по средствам большей вытянутости орбиты оэлектрона между лигандом и редкоземельным ионом, обусловленной меньшей экранировкой ядра Мо⁶⁺ по сравнению с W⁶⁺, которая определяет большую ковалентность связи Мо-О. Так же изменяется количественное соотношение переходов между каналами люминесценции (около 10%) с уровня ${}^{4}F_{3/2}$ на нижележащие ${}^{4}I_{x/2}$ мультиплеты.

Список использованных источников

1. Исаев В.А., Игнатьев Б.В., Лебедев А.В., Плаутский П.Г., Аванесов С. А. Теплофизические особенности роста крупных монокристаллов вольфрамата бария для ВКР - преобразования лазерного излучения // Экологический вестник научных центров Черноморского экономического сотрудничества. 2012. № 2.

2. Judd B. R. Optical absorption intensities of rare-earth ions / B. R. Judd // Phys. Rev. - 1961. – Vol. 127. – P. 750-762.

3. Ofelt G. S. Intensities of crystal spectra of rare-earth ions / G. S. Ofelt // J. Chem. Phys. -1962. - Vol. 37. - P. 511-519.

4. Интенсивность f-fпереходов редкоземельных ионов Nd³⁺, Er³⁺, Tm³⁺ в кристаллах кальции-ниобий-галлиевого граната / И.А. Белова, Ф.А. Больщиков, Ю.К. Воронько и др. // физика твердого тела. – 2008. – том 50. – вып. 9. – С. 1552 – 1558.

5. Carnell W.T. Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. / W. T. Carnall, P. R. Fields, B. G. Wybourne // J. Chem. Phys. – 1965 - Vol. 42. - N 11. P. 3797-3806.

6.Kaminskii A. A. Laser Crystals / A. A. Kaminskii. - Springer, Berlin, 1981. - 456 P.

7.Spectroscopic study of floating zone technique-grown Nd^{3+} -doped Ca MoO_4 / L. H. C. Andrade, D. R. Ardila, L. B. Barbosa et al // Eur. Phys. J. Appl. Phys. – 2005. – Vol. 29. – P. 55-64.

8.Параметры интенсивности ионов неодима в кристаллах вольфраматов стронция / В.А. Исаев, А.В. Скачедуб, В.А. Клименко и др. // Экологический вестник научных центров Черноморского экономического сотрудничества. – 2013. – Т. 1. – С. 32-41.

9.Effect of annealing treatment on spectroscopic properties of a Nd^{3+} -doped PbWO₄ single crystal / Y. Chen, Y. Lin, Z. Luo et al // J. Opt. Soc. Am. B. – 2005. – Vol. 22. – No 4. – P. 898-904.

10. Shannon R. D. Effective ionic radii in oxides and fluorides / R. D. Shannon, C. T. Previtt // ActaCrystallografiaB. – 1969. – Vol. 25. - № 5. – P. 925-9462.

11. Влияние структурных дефектов на физические свойства вольфраматов / Л. Н. Лимаренко, Ф. П. Алексеев, М. В. Пашковский и др. -Львов: Вищашкола, 1978. – 160 с.

12.Ebendorff-HeidepriemH. Tb³⁺*f*-*d*absorptionasindicatorofthe effect of covalency on the Judd – Ofelt Ω_2 parameteringlasses / H. Ebendorff-Heidepriem, D. Ehrt // Journal of Non-Crystalline Solids. – 1999. – Vol. 248. – P. 247-252.

13. Effect of glass composition on Judd-Ofelt parameters and radiative decay rates of Er^{3+} in fluoride phosphate and phosphate glasses / H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli et al // Journal of Non-Crystalline Solids. – 1998. – Vol. 240. – P. 66-78.

14. Thermal and optical properties of Tm³⁺: SrMoO₄ crystal /Xinghua Ma, Zhenyu You, Zhaojie Zhu et al // Journal of Alloys and Compounds. – 2008. – Vol. 465. – P. 406-411.

15. Кондон Е. Теория атомных спектров. / Е. Кондон, Г. Шортли. – М.: Издательство иностранной литературы, 1949. – 438 с.

16. VanVleck J.H. The puzzle of rare-earth spectra in solids // J. H. Van. Vleck // J. Phys. Chem. -1937. -Vol. 41. $- N_{2} 1$. - P. 67-80.

17.Spectroscopic properties of self-exited Raman scattering of the Nd³⁺: SrMoO₄ crystal / H Lin, S Feng, W Cong-Shang et al // ActaPhysicaSinica – 2007. – Vol. 56. - \mathbb{N}_{2} 3. – P. 1751-1757.

18. Кузьмичева Г.М. «Структурная обусловленность свойств". Часть III. «Кристаллохимия лазерных кристаллов"-М.: МИТХТ. 2004 г. – с. 80.

References

1. IsaevV.A., Ignat'evB.V., LebedevA.V., PlautskijP.G., AvanesovS. A. Teplofizicheskieosobennostirostakrupnyhmonokristallovvol'framatabarijadljaVKRpreobrazov anijalazernogoizluchenija //

JekologicheskijvestniknauchnyhcentrovChernomorskogojekonomicheskogosotrudnichestva. 2012. № 2.(In Russian)

2. Judd B. R. Optical absorption intensities of rare - earth ions / B. R. Judd // Phys. Rev. - 1961. - Vol. 127. - P. 750-762.

3. Ofelt G. S. Intensities of crystal spectra of rare-earth ions / G. S. Ofelt // J. Chem. Phys. -1962. - Vol. 37. - P. 511-519.

4. Intensivnost' f f perehodov redkozemel'nyh ionov Nd³⁺, Er^{3+} , Tm^{3+} v kristallahkal'ciiniobij-gallievogogranata / I.A. Belova, F.A. Bol'shhikov, Ju.K. Voron'koi dr. // fizikatverdogotela. – 2008. – tom 50. – vyp. 9. – S. 1552 – 1558

5. Carnell W.T. Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. / W. T. Carnall, P. R. Fields, B. G. Wybourne // J. Chem. Phys. – 1965Vol. 42. - № 11. P. 3797-3806.

6.Kaminskii A. A. Laser Crystals / A. A. Kaminskii. – Springer, Berlin, 1981. – 456 P.

7.Spectroscopic study of floating zone technique - grown Nd^{3+} - doped Ca MoO4 / L. H. C. Andrade, D. R. Ardila, L. B. Barbosa et al // Eur. Phys. J. Appl. Phys. – 2005. – Vol. 29. – P. 55-64.

8.Parametry intensivnosti ionov neodima v kristallah vol'framatov stroncija / V.A. Isaev, A.V. Skachedub, V.A. Klimenkoi dr. // JekologicheskijvestniknauchnyhcentrovChernomorskogojekonomicheskogosotrudnichestva. – 2013. – T. 1. – S. 32-41.(In Russian)

9.Effect of annealing treatment on spectroscopic properties of a Nd^{3+} -doped PbWO₄ single crystal / Y. Chen, Y. Lin, Z. Luo et al // J. Opt. Soc. Am. B. – 2005. – Vol. 22. - $N \ge 4.$ – P. 898-904.

10. Shannon R. D. Effective ionic radii in oxides and fluorides / R. D. Shannon, C. T. Previtt // ActaCrystallografia V. – 1969. – Vol. 25. - № 5. – P. 925-9462.

11. Vlijaniestrukturnyhdefektovnafizicheskiesvojstvavol'framatov / L. N. Limarenko, F. P. Alekseev, M. V. Pashkovskiji dr. -L'vov: Vishhashkola, 1978. – 160 s.(In Russian)

12. Ebendorff - HeidepriemH. Tb³⁺ f-d absorption as indicator of the effect of covalency on the Judd – Ofelt Ω_2 parameter in glasses / H. Ebendorff - Heidepriem, D. Ehrt // Journal of Non - Crystalline Solids. – 1999. – Vol. 248. – P. 247-252.

13. Effect of glass composition on Judd - Ofelt parameters and radiative decay rates of Er^{3+} in fluoride phosphate and phosphate glasses / H. Ebendorff - Heidepriem, D. Ehrt, M. Bettinelli et al // Journal of Non - Crystalline Solids. – 1998. – Vol. 240. – P. 66-78.

14. Thermal and optical properties of Tm^{3+} : SrMoO₄ crystal /Xinghua Ma, Zhenyu You, Zhaojie Zhu et al // Journal of Alloys and Compounds. – 2008. – Vol. 465. – P. 406-411.

15. Kondon E. Teorijaatomnyhspektrov. / E. Kondon, G. Shortli. – M.: Izdatel'stvo inostrannoj literatury, 1949. – 438 s

16. Van Vleck J.H. The puzzle of rare - earth spectra in solids // J. H. Van. Vleck // J. Phys. Chem. -1937. -Vol. 41. $- N_{2} 1$. - P. 67-80.

17. Spectroscopic properties of self - exited Raman scattering of the Nd3+: SrMoO4 crystal / H Lin, S Feng, W Cong - Shang et al // ActaPhysicaSinica – 2007. – Vol. 56. - N_{2} 3. – P. 1751-1757.

18. Kuz'micheva G.M. «Strukturnaja obuslovlennost' svojstv". Chast' III. «Kristallohimija lazernyh kristallov" - M.: MITHT. 2004 g. – s. 80

http://ej.kubagro.ru/2013/07/pdf/96.pdf