Scientific Journal of KubSAU

Polythematic online scientific journal
of Kuban State Agrarian University
ISSN 1990-4665
AGRIS logo UlrichsWeb logo DOAJ logo

Name

Tkachev Aleksandr Aleksandrovich

Scholastic degree


Academic rank

associated professor

Honorary rank

—

Organization, job position

Novocherkassk Engineering Meliorative Institute named after A.K. Kortunov
   

Web site url

—

Email

lxtkachev@gmail.com


Articles count: 3

273 kb

FEATURES OF THE CALCULATION OF DEAD-END CHANNELS FOR THE CASE OF AUTOMATED IRRIGATION SYSTEM

abstract 1141510077 issue 114 pp. 1021 – 1032 30.12.2015 ru 1065
In this article we consider the method of hydraulic calculation of dead-end channels with the numerical solutions of differential equations of motion of water. Dead-end channels are of interest for carrying out simulation studies, because they may be used for the simulation of water accounting and water distribution in the domestic inter-farm network. In order to improve management of water supply to consumers in the water distribution sites, in many irrigation systems there is an additional capacity in the form of a regulation pool. The applied method of active control of light distribution is expected to use the existing capacity of irrigation canals with automatic regulators to block the plants. When there is a complete disconnection of water consumers, the volumes in pools of water irrigation channel are redistributed to provide the command area in the water distribution nodes at any given time. This result can be achieved by automatic control of the level changes in individual pools of the channel in order to redistribute the volumes to backup pools of individual. Search and selection of the necessary rule of automatic controls can achieve the following objectives: to implement effective processes and management of water supply regulation in the specified node; maximize the use of volume tail water channels, preventing the threat of overflow channels; minimize the loss of irrigation water discharge
235 kb

HYDRAULIC DESIGN OF LINEARLY DISTRIBUTED RELEASES OF STORED WATER DISCHARGES

abstract 1251701013 issue 125 pp. 196 – 209 31.01.2017 ru 420
The purpose of the article is to develop methods for hydraulic design of extreme discharges and water depths in critical gage lines of waterways diverting water from spillways for the accepted law to regulate linearly distributed releases of stored water discharges. The task of control for linearly distributed releases of stored water discharges is based on hydraulic design for the process of propagation and transformation of long waves described with Saint Venant equations. These equations are nonlinear and have no accurate solution in general case. To get approximate solutions they are linearized. It is established that the task of integration for these equations supposes to get their preliminary solution in the form of complete integral. Applying the complete integral theory we get analytical solution that describe the process of transformation for one direction waves moving in infinitely long prism canal of semi-bounded extent with initial uniform regime of water flow. An example of changes in both water discharge and flow depths in two fixed downstream gage lines of hydraulic works at the distance of 5000 and 10000 m from the initial gage line is presented. Hydraulic design was carried out according to the derived analytical formulas accepted as an example classical method of characteristics that is considered as analogous. Comparison of the design results on two methods allowed to determine the maximum relative error that does not exceeds 3,5 % for the design discharges and water depths. Introduction of the developed method for hydraulic design of linearly distributed releases of discharges in waterways diverting water from spillways will make it possible to optimize idle and non-technological stored water discharges
226 kb

REGULATION OF CONCENTRATED RELEASES OF WATER DISCHARGES ON STREAM FLOWS IN LOWER TAILS OF SPILLWAY WATERWORKS

abstract 1321708112 issue 132 pp. 1375 – 1389 31.10.2017 ru 312
The article considers the mathematical task of calculating the transient flow of water in the regulation of concentrated releases of water discharges on stream flows in lower tails of spillway waterworks. An algorithm, analytical solutions based on hydraulic calculations of the process of propagation and transformation of long waves described by Saint-Venant equations are constituted. These equations are nonlinear and have no exact solutions. To obtain approximate solutions these equations are linearized. The efficiency of spillways depends on how accurately hydraulic processes characteristics are measured. Control and direct measurement of characteristics of hydraulic processes in natural conditions is difficult, which requires applying methods of mathematical modeling and simulation studies of transient processes, which are based on the algorithms of functioning of transient hydraulic processes control. Introduction of the developed method for hydraulic calculation of discharge releases to streams, diverting the water from water discharge structures, allows optimize idle and non-technological discharges of water from reservoirs. Considering the highly dynamic nature of the water flow in the lower tails of the dams at concentrated releases of water discharges from reservoirs, development of new methods of hydraulic calculation of extreme discharges and water depths at the critical sections of watercourses with transient regime of water flow is an important task
ßíäåêñ.Ìåòðèêà