Scientific Journal of KubSAU

Polythematic online scientific journal
of Kuban State Agrarian University
ISSN 1990-4665
AGRIS logo UlrichsWeb logo DOAJ logo

Name

Trunev Aleksandr Petrovich

Scholastic degree


Academic rank

—

Honorary rank

—

Organization, job position

A&E Trounev IT Consulting, Toronto, Canada
   

Web site url

—

Email

trounev@rogers.com


Articles count: 125

421 kb

GRAVITY FIELD IN THE VICINITY OF STARS AND GEOMETRIC TURBULENCE

abstract 0991405106 issue 99 pp. 1508 – 1529 30.05.2014 ru 954
In this article, the solutions of Einstein's equations for empty space, describing the gravitational field near the Sunlike star have been investigated. We have accounted the own field of the star, the motion of the star around the galactic center, the motion of the galaxy relative to the center of the local supercluster and the expansion of the Universe. The resulting gravitational field near the star has a complex structure, which leads to large-scale geometric turbulence linking large and small scales in this problem
471 kb

THE SPEED OF GRAVITY AND HYPER-FAST TRAVEL IN GENERAL RELATIVITY

abstract 1001406100 issue 100 pp. 1518 – 1541 30.06.2014 ru 1206
The equation of parabolic type, describing the evolution of the gravitational field on the scale of the solar system, galaxy and cluster galaxies is derived from the Einstein equation. Space-time metric compatible with the post-Newtonian approximation and the metric of the expanding universe, and allowing hyper-fast travel in Einstein's theory of gravitation is considered. It is shown that the speed of hyper-fast travel depends on the implementation, including the parameters of ground state of the expanding universe. A criterion for the maximum speed of motion of material bodies has been proposed
339 kb

GEOMETRIC TURBULENCE AND QUANTUM THEORY

abstract 1001406109 issue 100 pp. 1651 – 1672 30.06.2014 ru 1309
The parabolic equation describing the evolution of the gravitational field is derived from Einstein equation. The instability of metric leads to a geometric pattern of turbulence. Microscopic turbulent pulsations generate two kinds of matter with positive and negative energy density, respectively. It is shown that in the case of negative energy density parabolic equation leads to an equation of Schrödinger type
285 kb

GEOMETRIC TURBULENCE AND STELLAR EVOLUTION

abstract 1031409026 issue 103 pp. 392 – 421 30.11.2014 ru 1067
In this article we consider Einstein's theory of gravity in relation to the Yang-Mills theory. It is shown that in Einstein's theory there exists a metric together with the Yang-Mills theory, in which the field equations are reduced to the Liouville equation describing the evolution of stars. The mechanism of generation of stellar energy of dark energy in the processes of geometric turbulence is discussed
305 kb

ELECTRIC CHARGE IN 6D

abstract 1041410152 issue 104 pp. 2172 – 2195 30.12.2014 ru 902
Wave solutions of Einstein's equations in the sixdimensional space-time with metric signature (+, +, +, -, -, -) have been found. It is shown that solutions of this type can be used to model the structure of the electric charge
2215 kb

PREDICTING GLOBAL CLIMATIC ANOMALIES SUCH AS EL NINO AND LA NINA BY USING ASC-ANALYSIS WITH AIDOS-X ARTIFICIAL INTELLIGENCE SYSTEM

abstract 1051501007 issue 105 pp. 128 – 160 30.01.2015 ru 868
A number of information and semantic models has been developed using artificial intelligence system AIDOS-X. The similarity between the movement of the elements of the lunar orbit and the dynamics of the instantaneous pole of the Earth, as well as violations of the global atmospheric circulation and water, leading to the emergence of episodes of El Niño and La Niña are justified. We have explored a possibility of semantic information models equatorial regions of the Pacific for prediction of global climatic disturbances in the tropical latitudes. We made a forecast about breaking of global ocean circulation, or the occurrence of El Niño episode of the classical type in 2015
426 kb

RIEMANNIAN GEOMETRY AND UNIFIED FIELD THEORY IN 6D

abstract 1051501008 issue 105 pp. 161 – 186 30.01.2015 ru 1049
The article discusses the Riemann's unified field theory and its extension in 6D in general relativity. It is shown that in 6D there are possible movements on two spherical areas in the form of nonlinear waves
642 kb

GEOMETRIC TURBULENCE IN GENERAL RELATIVITY

abstract 1071503078 issue 107 pp. 1170 – 1215 31.03.2015 ru 974
The article presents the simulation results of the metric of elementary particles, atoms, stars and galaxies in the general theory of relativity and Yang-Mills theory. We have shown metrics and field equations describing the transition to turbulence. The problems of a unified field theory with the turbulent fluctuations of the metric are considered. A transition from the Einstein equations to the diffusion equation and the Schrödinger equation in quantum mechanics is shown. Ther are examples of metrics in which the field equations are reduced to a single equation, it changes type depending on the equation of state. These examples can be seen as a transition to the geometric turbulence. It is shown that the field equations in general relativity can be reduced to a hyperbolic, elliptic or parabolic type. The equation of parabolic type describing the perturbations of the gravitational field on the scale of stars, galaxies and clusters of galaxies, which is a generalization of the theory of gravitation Newton-Poisson in case of Riemannian geometry, taking into account the curvature of space-time has been derived. It was found that the geometric turbulence leads to an exchange between regions of different scale. Under turbulent exchange material formed of two types of clusters, having positive and negative energy density that corresponds to the classical and quantum particle motion respectively. These results allow us to answer the question about the origin of the quantum theory
397 kb

METRIC OF ACCELERATING AND ROTATING REFERENCE SYSTEMS IN GENERAL RELATIVITY

abstract 1071503112 issue 107 pp. 1722 – 1744 31.03.2015 ru 925
Metric describing the accelerated and rotating reference system in general relativity in the case of an arbitrary dependence of acceleration and angular velocity on time has been proposed. It is established that the curvature tensor in such metrics is zero, which corresponds to movement in the flat spaces. It is shown that the motion of test bodies in the metric accelerated and rotating reference system in general relativity is similarly to the classical motion in non-inertial reference frame. Consequently, there exist a metric in general relativity, in which the Coriolis theorem and classic velocity-addition formula are true. This means that classical mechanics is accurate rather than approximate model in general relativity. A theory of potential in non-inertial reference systems in general relativity is considered. The numerical model of wave propagation in non-inertial reference frames in the case when potential depending of one, two and three spatial dimensions has been developed. It is shown in numerical experiment that the acceleration of the reference system leads to retardation effects, as well as to a violation of the symmetry of the wave front, indicating that there is local change of wave speed
0 kb

MAXWELL’S EQUTIONS AND YANG-MILLS THEORY IN THE METRIC OF ACCELERATING AND ROTATING REFERENCE SYSTEMS IN GENERAL RELATIVITY

abstract 1081504098 issue 108 pp. 1352 – 1375 30.04.2015 ru 0
Metric describing the accelerated and rotating reference system in general relativity in the case of an arbitrary dependence of acceleration and angular velocity on time has been proposed. It is established that the curvature tensor in such metrics is zero, which corresponds to movement in the flat spaces. It is shown that the motion of test bodies in the metric accelerated and rotating reference system in general relativity is similarly to the classical motion in non-inertial reference frame. Maxwell's equations and Yang-Mills theory are converted to the moving axes in metric describes the acceleration and rotating reference frame in the general relativity in the case of an arbitrary dependence of acceleration and angular velocity of the system from time. The article discusses the known effects associated with acceleration and (or) the rotation of the reference frame - the Sagnac effect, the effect of the Stewart-Tolman and other similar effects. The numerical model of wave propagation in non-inertial reference frames in the case when potential depending of one, two and three spatial dimensions has been developed. It has been shown in numerical experiment that the acceleration of the reference system leads to retardation effects, as well as to a violation of the symmetry of the wave front, indicating that there is local change of wave speed
ßíäåêñ.Ìåòðèêà