Scientific Journal of KubSAU

Polythematic online scientific journal
of Kuban State Agrarian University
ISSN 1990-4665
AGRIS logo UlrichsWeb logo DOAJ logo
Search by author's name Search by title
0 kb

MAXWELL’S EQUTIONS AND YANG-MILLS THEORY IN THE METRIC OF ACCELERATING AND ROTATING REFERENCE SYSTEMS IN GENERAL RELATIVITY

abstract 1081504098 issue 108 pp. 1352 – 1375 30.04.2015 ru 0
Metric describing the accelerated and rotating reference system in general relativity in the case of an arbitrary dependence of acceleration and angular velocity on time has been proposed. It is established that the curvature tensor in such metrics is zero, which corresponds to movement in the flat spaces. It is shown that the motion of test bodies in the metric accelerated and rotating reference system in general relativity is similarly to the classical motion in non-inertial reference frame. Maxwell's equations and Yang-Mills theory are converted to the moving axes in metric describes the acceleration and rotating reference frame in the general relativity in the case of an arbitrary dependence of acceleration and angular velocity of the system from time. The article discusses the known effects associated with acceleration and (or) the rotation of the reference frame - the Sagnac effect, the effect of the Stewart-Tolman and other similar effects. The numerical model of wave propagation in non-inertial reference frames in the case when potential depending of one, two and three spatial dimensions has been developed. It has been shown in numerical experiment that the acceleration of the reference system leads to retardation effects, as well as to a violation of the symmetry of the wave front, indicating that there is local change of wave speed
0 kb

TO THE RELATIONSHIP OF COMBINATORIAL, PROBABILISTIC AND SYNERGETIC APPROACHES FOR DETERMINING THE QUANTITY OF INFORMATION

abstract 1081504099 issue 108 pp. 1376 – 1410 30.04.2015 ru 0
In the article we consider integrative codes of the elements of discrete systems for the first time. It is shown that these codes in the general case divided into group and system parts. The group part of the code characterizes a set of elements with identical value of the sign as a whole. System part of the code appears when different sets are combined into the system. We have established that in using the weighted average of these parts of integrative code we can express information measures of combinatorial, probabilistic and synergistic approaches to determine the quantity of information. It is concluded that there is an integrative coding relationship between these approaches, and the existing types of information have genetic relationship. It is shown that the information considered in the synergetic approach is genetically of primary in relation to the information, which operates on the combinatorial and probabilistic approaches. Also, we have answered the question why the different conceptions of information lead to identical formulas to measure it
0 kb

DYNAMICS OF RELATIVISTIC PARTICLES IN THE GALAXY METRIC

abstract 1161602101 issue 116 pp. 1614 – 1636 29.02.2016 ru 0
In this study we investigate the dynamics of relativistic particles in the axially symmetric metrics. We have built metric having axial symmetry and contains two centers of gravity and a logarithmic singularity. The application received metrics to the movement of particles in galaxies is described. It is established that there are stable orbit in the metric with two centers of gravity, the particle velocity at which reaches the value v/ c ≈ 7.0 . Orbit radius varies widely, but remains substantially flat orbit. Unstable same movements are completed so that the particles leave the system. The hypothesis that this kind of relativistic objects can serve as sources of the magnetic fields of the planets, stars and galaxies has been proposed. The question of the realization in the galaxy metric of Einstein's hypothetical elevator in which there is a uniform gravitational field, simulating the accelerated movement of the elevator is described. A homogeneous gravitational field in a limited region of space was numerical simulated. It has been shown that this kind of accelerated objects generate relativistic effect in the form of a log potential, not diminishing with distance from the center of the system. It is assumed that such capabilities can be associated with the Higgs field responsible for the occurrence of the inertial mass of the elementary particles
0 kb

DYNAMICAL MODEL OF ELECTROMAGNETIC DRIVE

abstract 1161602105 issue 116 pp. 1671 – 1694 29.02.2016 ru 0
The article discusses the dynamic model of the rocket motor electromagnetic type, consisting of a source of electromagnetic waves of radio frequency band and a conical cavity in which electromagnetic waves are excited. The processes of excitation of electromagnetic oscillations in a cavity with conducting walls, as well as the waves of the YangMills field have been investigated. Multi-dimensional transient numerical model describing the processes of establishment of electromagnetic oscillations in a cavity with the conducting wall was created Separately, the case of standing waves in the cavity with conducting walls been tested. It is shown that the oscillation mode in the conducting resonator different from that in an ideal resonator, both in the steady and unsteady processes. The mechanism of formation of traction for the changes in the space-time metric, the contribution of particle currents, the Yang-Mills and electromagnetic field proposed. It is shown that the effect of the Yang-Mills field calls change the dielectric properties of vacuum, which leads to a change in capacitance of the resonator. Developed a dynamic model, which enables optimal traction on a significant number of parameters. It was found that the thrust increases in the Yang-Mills field parameters near the main resonance frequency. In the presence of thermal fluctuations and the Yang-Mills field as well the traction force changes sign, indicating the presence of various oscillation modes
0 kb

GENERAL RELATIVITY AND DYNAMICAL MODEL OF ELECTROMAGNETIC DRIVE

abstract 1161602107 issue 116 pp. 1728 – 1751 29.02.2016 ru 0
The article discusses the dynamic model of the rocket motor electromagnetic type, consisting of a source of electromagnetic waves of radio frequency band and a conical cavity in which electromagnetic waves are excited. The processes of excitation of electromagnetic oscillations in a cavity with conducting walls, as well as the waves of the YangMills field are investigated. The multi-dimensional transient numerical model describing the processes of electromagnetic oscillations in a cavity with conducting wall created. Separately, the case of standing waves in the cavity with conducting walls considered. It is shown that the oscillations mode in the conducting resonator different from that in an ideal resonator, both in steady and unsteady processes. The mechanism of formation of traction for the changes in the space-time metric, the contribution of particle currents, the Yang-Mills and electromagnetic field proposed. It is shown that the Yang-Mills field calls the change of the dielectric constant, which leads to a change in the capacitance of the resonator. Thus, the parametric resonance occurs in the system, which leads to a strengthening of the Yang-Mills amplitude, and to the emergence of traction. We have developed a dynamic model, which enables optimal traction on a significant number of parameters. It was found that the thrust increases in the Yang-Mills field near the main resonance frequency. A model describing the excitation and emission of nonlinear waves of the Yang-Mills field was proposed. It is shown that nonlinear waves of the Yang-Mills field more effectively carry the momentum from the system in comparison with electromagnetic waves, and it explains the significant increase by several orders of thrust in the engines of the electromagnetic type, compared with the photon rocket
315 kb

DYNAMICS OF THE GEOMAGNETIC FIELD AND SUPERGRAVITY IN 112D

abstract 1191605095 issue 119 pp. 1420 – 1441 31.05.2016 ru 306
The paper deals with the problem of changing the polarity of the geomagnetic field as a problem of a unified field theory and supergravity in the 112D. Investigated centrally symmetric metric depends on the radial coordinate in the observable physical space of one of the worlds. The equation that relates the magnetic field of the planet with a gravitational field in 5D has been derived. The problem of changing the polarity of the magnetic field of the Earth discussed. The rapid change of the geomagnetic field polarity detected on the basis of paleomagnetic data is modeled as a movement on a hypersphere in the 112D, which corresponds to 110 corners. The simplest example of such a movement in the case of the three angles is the Euler model that describes the rigid body rotation. In this model, there are modes with a quick flip of the body while conservation of the angular momentum. If the body has a magnetic moment, when such a change occurs flip of the magnetic field. It is assumed that the central core of the earth is magnetized and surrounded by a number of satellites, each of which has a magnetic moment. Satellites interact with a central core and one another by means of gravity and through a magnetic field. The central core may sudden flip, as in the Euler model. It is shown that the duration of phase with constant polarity and upheaval time depends on the magnitude of the disturbance torque and core asymmetry. We discuss Einstein's hypothesis about the origin of the magnetic field when rotating the neutral masses. It is shown that the motion on a hypersphere in the 112D has the effect of a magnetic field due to the interaction of nucleons in nuclei. Such magnetic field is most evident for iron, cobalt and nickel - elements are consisting of the Earth's core
353 kb

THE UNIFIED FIELD THEORY AND SUPERGRAVITY IN 112D

abstract 1191605094 issue 119 pp. 1390 – 1419 31.05.2016 ru 320
In the paper the problem of constructing a unified field theory based on the theory of supergravity in the 112D is discussed. It is assumed that in the 112-dimensional Riemann space there are 37 three-dimensional worlds coexist having a single time and associated gravity. Investigated centrally symmetric metric depends on the radial coordinate in the observable physical space of one of the worlds. It is assumed that in the 112D performed the wave equation of the general form, describing the dynamics of the scalar field. From this equation, the wave equation is displayed in the fourdimensional space-time, containing terms describing the contribution of extra dimensions. It is shown that the quantum numbers of the problem allow us to describe the structure of the atom and the atomic nucleus on the assumption that given the total mass of the central body. The problem on the dynamics of the scalar field in the 112D in a centrally symmetric metric has been described. Built of field quantization theory in general, and in the particular case of metrics depending on the Weierstrass elliptic functions. It is shown that in this case there are bounded periodic potentials and corresponding periodic solutions that depend on the energy and angular momentum projection, and on the invariants of the Weierstrass function. It is found that in an excited state with a sufficiently large magnitude of the angular momentum of the projection portion of the radial wave function is periodic in a limited range, while the ground state allowed waves on all axes of the radial coordinate. The connection of the solutions to the Yang-Mills theories discussed
286 kb

APPLIED STATISTICS – THE STATE AND THE PROSPECTS

abstract 1191605003 issue 119 pp. 44 – 74 31.05.2016 ru 322
Applied Statistics - the science of how to analyze the statistical data. As an independent scientificpractical area it develops very quickly. It includes numerous widely and deeply developed scientific directions. Those who use the applied statistics and other statistical methods, usually focused on specific areas of study, ie, are not specialists in applied statistics. Therefore, it is useful to make a critical analysis of the current state of applied statistics and discuss trends in the development of statistical methods. Most of the practical importance of applied statistics justifies the usefulness of the work on the development of its methodology, in which the field of scientific and applied activities would be considered as a whole. We have given some brief information about the history of applied statistics. Based on Scientometrics of Applied Statistics we state that each expert has only a small part of accumulated knowledge in this area. We discuss five topical areas in which modern applied statistics develops, ie five "points of growth": nonparametric, robustness, bootstrap, statistics of interval data, and statistics of non-numerical data. We discuss some details of the basic ideas of a non-numerical statistics. In the last more than 60 years in Russia, there has been a huge gap between official statistics and the scientific community of experts on statistical methods
339 kb

GENERIC POLYNOMIALS

abstract 1321708044 issue 132 pp. 549 – 558 31.10.2017 ru 323
The concept of generic polynomial appeared in Saltman’s works at the end of the last century and it is connected with the inverse problem of Galois theory, which is still far from its complete solution. Let G be a finite group and K be a field, the polynomial f(x,t1, … , tn) with coefficients from the field K is generic for the group G, if Galois group of this polynomial over the field K(t1, … , tn) is isomorphic G and if for any Galois extension L/K with Galois group isomorphic G there are such values of parameters ti = ai , i = 1,2, … , n, that the field L is the splitting field of the polynomial f(x,a1, … , an) over K. Generic polynomials over a given field K and a given finite group G do not always exist, and if they exist then it’s not easy to construct them. For example, for a cyclic group of the eight order C8 there is no generic polynomial over the field of rational numbers Q, although there are found specific polynomials with rational coefficients having Galois group isomorphic C8. Therefore, this is of interest to construct generic polynomials for the group G in cases when G is a direct product of groups of lower orders. In this study we show to solve this problem in case when G is a direct product of certain cyclic groups and there is a type of corresponding generic polynomials. Moreover, we give constructions over the fields of characteristic 0 and over the fields of characteristic 2
223 kb

THE NEW CHRONOLOGY OF THE WORLD HISTORY AND THE RUSSIAN HISTORY AS THE BASIS OF STATE-PATRIOTIC OUTLOOK

abstract 1201606003 issue 120 pp. 60 – 85 30.06.2016 ru 328
The relationship of Mathematical Statistics (wider - Mathematical methods of research) and history is multifaceted. In our opinion, the history of mathematical statistics is an integral part of this mathematical discipline. We have given a review of our works on the history of statistical methods. The role of mathematical statistics for the history is very important. In this article, we restrict ourselves to the questions of chronology. For centuries, the chronology is considered as a part of applied mathematics. The main problem is that the whole "common" concept of the Russian and the World history as a whole presented in textbooks was faked by the opponents of Russia after the collapse of the global Empire (Russian kingdom) in the early 17th century - 400 years ago. The stories about historical events are the information weapon. It was used by the new rulers to suppress the resistance of the vanquished. A new mathematical and statistical chronology of general and Russian history, which was built by a scientific team led by Academician Fomenko, has been helpful for the discussion about the current economic and political problems of relations between Russia and the West in the XXI century. In our opinion, the new chronology of the World and Russian history should be one of the foundations of state-patriotic ideology and deriving practical solutions. The purpose of this article is to give the initial idea of the new chronology from this point of view
ßíäåêñ.Ìåòðèêà