Scientific Journal of KubSAU

Polythematic online scientific journal
of Kuban State Agrarian University
ISSN 1990-4665
AGRIS logo UlrichsWeb logo DOAJ logo

Name

Kazakovtseva Ekaterina Vasilyevna

Scholastic degree

Academic rank

Honorary rank

Organization, job position

Kuban State University
   

Web site url

Email


Articles count: 5

Sort by: Date Title Views
157 kb

3D MODELING OF TRANSPORT BINARY ELECTROLYTE IN THE GALVANOSTATIC MODE IN THE CONDITION OF ELECTRONEUTRALITY

abstract 1101506023 issue 110 pp. 351 – 362 30.06.2015 ru 966
In the article we have derived mathematical models of non-stationary transport binary electrolyte in EMS (electromembrane systems: electrodialysis apparatus, electromembrane cell, etc.) for the galvanostatic mode. To be specific, as EMS viewed channel of desalting of EDA (electrodialysis apparatus) and EMS with RMD (rotating membrane disk). We present a formula expressing the intensity of the electric field through the current density and concentration. Also, we have received the differential equation for the current density. The fundamental point here is derived new equation for the unknown vector function of current density of the initial system of equations of Nernst-Planck. In addition, the article shows the output equation for the current density in three dimensions; we have proposed various methods for solving the equation of the current density and the boundary conditions for the current density. The proposed mathematical models of transport binary electrolyte are easy to be generalized to an arbitrary electrolyte. However, the corresponding equations are cumbersome. It should be also noted that the boundary conditions can be varied and depend on the purpose of a particular study in this regard, in this work are just the equation having the general form
901 kb

INVESTIGATION OF TRANSPORT OF SALT IONS IN THE EXPERIMENTAL ELECTROCHEMICAL CELL WITH ROTATING DISK MEMBRANE

abstract 0941310025 issue 94 pp. 335 – 346 27.12.2013 ru 1255
This work is a continuation of [1], which was devoted to the investigation of the hydrodynamics of the experimental electrochemical cell with rotating disk cation exchange membrane. This article focuses on the transport of salt ions in a closed cell at different initial experimentation with modes of exact current regimes. The main regularities of transport of salt ions and membrane equal accessible surface were set
1350 kb

MATHEMATICAL MODELING AND NUMERICAL STUDY OF THE HYDRODYNAMICS OF THE EXPERIMENTAL ELECTROCHEMICAL CELL WITH ROTATING DISK MEMBRANE

abstract 0941310024 issue 94 pp. 324 – 334 27.12.2013 ru 1294
This article investigates hydrodynamic of experimental electrochemical cell with rotating disk in the cation exchange membrane. We have also investigated the flow in open, with the free surface of the solution and in hermetically closed cells. The main regularities of the hydrodynamics of the experimental cell at its real size were set
381 kb

THE TRANSFER OF SALT IONS IN AN ELECTROCHEMICAL CELL WITH ROTATING MEMBRANE DISK WITH ELECTROCONVECTION. PART 3. DEPENDENCE OF THE THICKNESS FROM THE FALL OF POTENTIAL

abstract 1171603015 issue 117 pp. 272 – 283 31.03.2016 ru 680
This article describes a mathematical model of transport of salt ions in a cell with a rotating disk cation exchange membrane at transcendent current regimes, taking into account electroconvection. Based on this model, we had a theoretically study of the process of transfer of salt ions and the dependence of the thickness of the diffusion layer from the fall of potential. This article is a continuation of [8] and [9], it conducted a numerical analysis of boundary value problem for a system of equations Nernst-Planck-Poisson and Navier-Stokes equations, modeling the transport of salt ions in a cylindrical cell with a rotating disc cation exchange membrane based on electroconvection. It is shown there is an electroconvection vortex in the center of the membrane disc. The solution flows around this vortex and forms a stagnation zone in front of it. With the increase in the size of the fall of potential, the electroconvective vortex decreases and at some value, the electroconvective vortex disappears. The study was conducted in the 1000 s when the angular velocity of 30 turns in a minute and change of the potential difference of 0.2V to 1.4V with a step 0.1. As a result, in this study it is shown that the thickness of the diffusion layer is practically linearly dependent on the fall of potential. The linear dependence of the thickness of diffusion layer from the fall of potential, in the first approximation, is disturbed by a slight deflection curve, the causes of which are needed to be found by means of extra experiments
830 kb

THE TRANSFER OF SALT IONS IN AN ELECTROCHEMICAL CELL WITH ROTATING MEMBRANE DISK WITH ELECTRO CONVECTION. PART 1. MATHEMATICAL MODEL

abstract 1031409080 issue 103 pp. 1173 – 1187 30.11.2014 ru 1093
This article is a continuation of the works [1,2], which were devoted to the study of hydrodynamics and transport of salt ions in the experimental electrochemical cell with a rotating disk with a cation exchange membrane of exact current modes, when the condition of local electroneutrality. This article presents a mathematical model of transport of salt ions in a cell with a rotating disk with a cation exchange membrane exorbitant current regimes, taking into account electroconvection. Under these conditions, fluid dynamics depends on the ion transport process salt and described by the system of Navier-Stokes equations in cylindrical coordinate system with the electric forces
.