Scientific Journal of KubSAU

Polythematic online scientific journal
of Kuban State Agrarian University
ISSN 1990-4665
AGRIS logo UlrichsWeb logo DOAJ logo
Search by author's name Search by title
381 kb

THE TRANSFER OF SALT IONS IN AN ELECTROCHEMICAL CELL WITH ROTATING MEMBRANE DISK WITH ELECTROCONVECTION. PART 3. DEPENDENCE OF THE THICKNESS FROM THE FALL OF POTENTIAL

abstract 1171603015 issue 117 pp. 272 – 283 31.03.2016 ru 682
This article describes a mathematical model of transport of salt ions in a cell with a rotating disk cation exchange membrane at transcendent current regimes, taking into account electroconvection. Based on this model, we had a theoretically study of the process of transfer of salt ions and the dependence of the thickness of the diffusion layer from the fall of potential. This article is a continuation of [8] and [9], it conducted a numerical analysis of boundary value problem for a system of equations Nernst-Planck-Poisson and Navier-Stokes equations, modeling the transport of salt ions in a cylindrical cell with a rotating disc cation exchange membrane based on electroconvection. It is shown there is an electroconvection vortex in the center of the membrane disc. The solution flows around this vortex and forms a stagnation zone in front of it. With the increase in the size of the fall of potential, the electroconvective vortex decreases and at some value, the electroconvective vortex disappears. The study was conducted in the 1000 s when the angular velocity of 30 turns in a minute and change of the potential difference of 0.2V to 1.4V with a step 0.1. As a result, in this study it is shown that the thickness of the diffusion layer is practically linearly dependent on the fall of potential. The linear dependence of the thickness of diffusion layer from the fall of potential, in the first approximation, is disturbed by a slight deflection curve, the causes of which are needed to be found by means of extra experiments
643 kb

SIMULATION OF PARTICLE DYNAMICS IN THE STERN-GERLACH APPARATUS

abstract 1171603060 issue 117 pp. 929 – 950 31.03.2016 ru 475
The model of the motion of particles in the SternGerlach apparatus in the classical and quantum mechanics was developed. The data simulation of particle trajectories and distribution of silver atoms on the surface of the plate in their deposition are discussed. It was found that for the experimentally observed distribution of two-dimensional shapes of the atoms must be assumed that the atoms are not involved in the precession motion in a magnetic field, while maintaining the direction of the magnetic moment, for example, parallel to the induction vector of the magnetic field during the time of motion in the apparatus. To obtain a realistic picture of the figure of the scattering of atoms used a classical model of movement and expression of forces compatible with the quantum picture of the motion of particles with spin ½. The magnetic field is simulated based on the original Stern-Gerlach data describing the distribution of the gradient of the induction components related to the splitting of the beam. Quantum model of particle motion is based on the Pauli equation in the boundary layer approximation. It is found that in this model, depending on the initial polarization of the particle, beam is split into either two or is deflected towards the magnet blade or in the opposite direction. It is shown that if the initial conditions for the task are reproducing the geometric dimensions and the magnetic field in the Stern-Gerlach apparatus, the figure of the scattering particles in the shape of the outline is similar to the experimentally observed shape
318 kb

ELECTRON STRUCTURE AND THE YANGMILLS THEORY

abstract 1171603061 issue 117 pp. 951 – 976 31.03.2016 ru 438
We have studied the question of the electromagnetic structure of a relativistic electron in connection with the Yang-Mills theory. From the Lorentz electrodynamics equations of and Dirac electron theory derived an equation describing nonlinear waves of the scalar potential. It is shown that this equation is similar to the equation describing the dynamics of the condensate in the Yang-Mills theory. There is also the connection to the Schrödinger equation: the scalar potential is a complex function, similar to the wave function in the Schrödinger theory. The model discussed electron is a solitary wave that occurs in the electromagnetic field. This wave has the properties of charged particles, able to interact with the external electric and magnetic field. An analytical solution describing solitary electromagnetic waves traveling at a speed less than the speed of light has been obtained. The existence of solitary electromagnetic waves consistent with the Hertz's hypothesis that suggested that cathode rays are a form of wave motion in an electromagnetic field. The proposed model of the electromagnetic structure of the electron thus solves the problem of duality wave-particle, which historically arose in the interpretation of experiments with cathode rays. Numerical modeling of electromagnetic electron structure shows that the initial state such as a spherical shell is unstable and disintegrates into a pair of nonlinear waves that leave the system with the speed of light. In the decay of the initial state concentrated in the neighborhood of the origin, waves of complex part of potential disappear with time, but a real part of the potential it tends to equilibrium
1119 kb

SUPERGRAVITY IN 112D

abstract 1171603082 issue 117 pp. 1266 – 1287 31.03.2016 ru 386
In the study we consider the problem of determining the motion and similarity parameter to the system of worlds in a Riemannian space 112D with a common field of gravity. Centrally symmetric metric, depending on the 110 angle coordinates and the radial coordinate and time was investigated. It is assumed that there are intelligent beings in every world, striving for self-knowledge. By virtue of the presence of the world hierarchy in one of them there is a system of complete identification of each characteristic of the individual being with macroparameters his world. If sentient beings in all the world to create a device to simulate their own history in the form of a network of computers using the available material and the physical laws of his world, and the loss of information when displaying one world to another is 1%, then 37- th world played only 68.9449%. For Earthlings, it was found that the average similarity parameter of professional group in recognition by using astronomical parameters is 68.75%. Therefore, we can assume that the world system, including Earth, contains 37 "floors." Assuming that each "floor" takes three space dimensions, and all the "floors" connected by a single time, we find here that the number of dimensions of space-time of the whole system is 112. In the article the angular motion in a Riemannian space is considered. The effect of the separate worlds on other worlds is simulated. It has been shown that the physical laws in all worlds represent a single movement covering the markers in the form of the motion of atoms and elementary particles in a gravitational field in the 112D
244 kb

FORECAST OF INFORMATION AND COMMUNICATION TECHNOLOGIES

abstract 1161602031 issue 116 pp. 430 – 456 29.02.2016 ru 863
Forecasting of scientific and technical progress is necessary to make grounded management decisions. In this article, we forecast the development of information and communication technologies in order to solve a particular but important issue of design of professional standards in the aerospace industry. We identify the factors affecting the development of information and communication (computer) technologies, with their help determine the trends of development of these technologies over the next two decades. The main trend - the maximum cheaper production of computer (or network) components, combined with an increase in their capacity. One way to reduce the cost of production is the "centralization" - combining several components into one. The third trend - the desire to reduce the size of computers. The size of a future computer could be a device the size of a pencil, a pin or button, as the system unit has a negligible size, keyboard and display are virtual, transfer any amount of information through a virtual office online. The development of secure free copying will lead to increased use of this free software and technologies "rental program" over the Internet. We predict an increase in reliability and intensive programs while maintaining the general principles of the interface. Revolutionary changes are expected production (machines, sensors), and household appliances
241 kb

LIMIT THEOREMS IN STATISTICAL CONTROL

abstract 1161602032 issue 116 pp. 457 – 478 29.02.2016 ru 916
The article analyzes the development of the theory of statistical control (from the XVIII century to the present). Prof. M.V. Ostrogradskii (1846) clearly describes the practical needs (ie, arising from the quality assurance of large quantities of bags of flour or pieces of cloth), to meet whom he spent his research. At the same time Simpson was among the ideas of probability theory XVIII century. Therefore prof. M.V. Ostrogradskii may be regarded as the founder of the theory of statistical process control (not only in our country but all over the world). Limit theorems of probability theory and mathematical statistics have provided a number of asymptotic results in problems of statistical quality control, offer based on these best practices. However, we must find out how much interest among specialists characteristics are different from limit for finite sample sizes. Such research for the synthesis algorithm control plan on the basis of the limit average output level of defects is made in this article, and for the synthesis algorithm control plan on the basis of the acceptance and the rejection levels of defects - not yet (clarification of the conditions of applicability of this algorithm - unsolved problem of applied mathematics). We have briefly reviewed the development of our researches on the statistical control. Control units can be not only some units of production, but also documents (with internal and external audit), and standard units of air, water and soil in the environmental monitoring. One of the achievements can be regarded as the transfer of statistical control of production for environmental monitoring
240 kb

MODERN ECONOMETRIC METHODS - INTELLECTUAL TOOLS OF ENGINEERS, MANAGERS AND ECONOMISTS

abstract 1161602033 issue 116 pp. 479 – 509 29.02.2016 ru 985
Statistical methods are widely used in domestic feasibility studies. However, for most managers, economists and engineers, they are exotic. This is because modern statistical methods are not taught in the universities. We discuss the situation, focusing on the statistical methods for economic and feasibility studies, ie, econometrics. In the world of science, econometrics has a rightful place. There are scientific journals in econometrics, Nobel Prizes in Economics are awarded to series of researches in econometrics. The situation in the field of scientific and practical work and especially the teaching of econometrics in Russia is disadvantaged. Often, individual particular constructions replace econometrics in general, such as those related to regression analysis. In econometrics we select three types of scientific and applied activities: development and study of methods of applied statistics, taking into account the specifics of economic data; development and study of econometric models, in accordance with the specific needs of economic science and practice; the use of econometric methods for statistical analysis of specific economic data. This article describes these three types of scientific and applied activities. We discuss the specificity of economic data. We show the importance of economic non-numeric values. We discuss the statistics of interval data - scientific direction at the joint of metrology and statistics. We give the representation of the econometric models. Problems of application of econometric methods are considered as an example of inflation. We discuss the statistics and econometrics as the field of scientific and practical activities. We have examined econometric methods in practical and training activities
298 kb

THE INVERSE PROBLEM OF A REPRODUCTION MODEL OF NATIONAL INCOME

abstract 1161602066 issue 116 pp. 972 – 982 29.02.2016 ru 624
In practice, there were developed and tested some mathematical models of balance relationships (balance model), economic growth, expanding economy, labour market, theories of consumption, production, competitive equilibrium models of the economy in conditions of imperfect competition and others. The basis of these models were based on linear algebra, mathematical analysis, mathematical programming, differential equations, optimization methods, optimal control theory, probability theory, stochastic processes, operations research, game theory, statistical analysis. The inverse problem in various models of mathematical Economics was considered quite rare. These tasks were sufficiently investigated in the study of physical processes. As shown by the analysis of the theoretical and applied studies of economic processes, they represent considerable interest for practice. Therefore, the considered in the study inverse problems of the mathematical model, as it is shown by the already introduced results of other mathematical models, are of considerable interest in applied and theoretical research. In this article, the authors have formulated and investigated an inverse problem for a model of economic growth. For its solution the authors propose to build a system of algebraic equations, using a reproduction model of national income; then, using methods of quadratic programming, to find the best average quadratic estimates of the model parameter
0 kb

DYNAMICS OF RELATIVISTIC PARTICLES IN THE GALAXY METRIC

abstract 1161602101 issue 116 pp. 1614 – 1636 29.02.2016 ru 0
In this study we investigate the dynamics of relativistic particles in the axially symmetric metrics. We have built metric having axial symmetry and contains two centers of gravity and a logarithmic singularity. The application received metrics to the movement of particles in galaxies is described. It is established that there are stable orbit in the metric with two centers of gravity, the particle velocity at which reaches the value v/ c ≈ 7.0 . Orbit radius varies widely, but remains substantially flat orbit. Unstable same movements are completed so that the particles leave the system. The hypothesis that this kind of relativistic objects can serve as sources of the magnetic fields of the planets, stars and galaxies has been proposed. The question of the realization in the galaxy metric of Einstein's hypothetical elevator in which there is a uniform gravitational field, simulating the accelerated movement of the elevator is described. A homogeneous gravitational field in a limited region of space was numerical simulated. It has been shown that this kind of accelerated objects generate relativistic effect in the form of a log potential, not diminishing with distance from the center of the system. It is assumed that such capabilities can be associated with the Higgs field responsible for the occurrence of the inertial mass of the elementary particles
0 kb

DYNAMICAL MODEL OF ELECTROMAGNETIC DRIVE

abstract 1161602105 issue 116 pp. 1671 – 1694 29.02.2016 ru 0
The article discusses the dynamic model of the rocket motor electromagnetic type, consisting of a source of electromagnetic waves of radio frequency band and a conical cavity in which electromagnetic waves are excited. The processes of excitation of electromagnetic oscillations in a cavity with conducting walls, as well as the waves of the YangMills field have been investigated. Multi-dimensional transient numerical model describing the processes of establishment of electromagnetic oscillations in a cavity with the conducting wall was created Separately, the case of standing waves in the cavity with conducting walls been tested. It is shown that the oscillation mode in the conducting resonator different from that in an ideal resonator, both in the steady and unsteady processes. The mechanism of formation of traction for the changes in the space-time metric, the contribution of particle currents, the Yang-Mills and electromagnetic field proposed. It is shown that the effect of the Yang-Mills field calls change the dielectric properties of vacuum, which leads to a change in capacitance of the resonator. Developed a dynamic model, which enables optimal traction on a significant number of parameters. It was found that the thrust increases in the Yang-Mills field parameters near the main resonance frequency. In the presence of thermal fluctuations and the Yang-Mills field as well the traction force changes sign, indicating the presence of various oscillation modes
ßíäåêñ.Ìåòðèêà