Scientific Journal of KubSAU

Polythematic online scientific journal
of Kuban State Agrarian University
ISSN 1990-4665
AGRIS logo UlrichsWeb logo DOAJ logo
Search by author's name Search by title
0 kb

DYNAMICAL MODEL OF ELECTROMAGNETIC DRIVE

abstract 1161602105 issue 116 pp. 1671 – 1694 29.02.2016 ru 0
The article discusses the dynamic model of the rocket motor electromagnetic type, consisting of a source of electromagnetic waves of radio frequency band and a conical cavity in which electromagnetic waves are excited. The processes of excitation of electromagnetic oscillations in a cavity with conducting walls, as well as the waves of the YangMills field have been investigated. Multi-dimensional transient numerical model describing the processes of establishment of electromagnetic oscillations in a cavity with the conducting wall was created Separately, the case of standing waves in the cavity with conducting walls been tested. It is shown that the oscillation mode in the conducting resonator different from that in an ideal resonator, both in the steady and unsteady processes. The mechanism of formation of traction for the changes in the space-time metric, the contribution of particle currents, the Yang-Mills and electromagnetic field proposed. It is shown that the effect of the Yang-Mills field calls change the dielectric properties of vacuum, which leads to a change in capacitance of the resonator. Developed a dynamic model, which enables optimal traction on a significant number of parameters. It was found that the thrust increases in the Yang-Mills field parameters near the main resonance frequency. In the presence of thermal fluctuations and the Yang-Mills field as well the traction force changes sign, indicating the presence of various oscillation modes
0 kb

GENERAL RELATIVITY AND DYNAMICAL MODEL OF ELECTROMAGNETIC DRIVE

abstract 1161602107 issue 116 pp. 1728 – 1751 29.02.2016 ru 0
The article discusses the dynamic model of the rocket motor electromagnetic type, consisting of a source of electromagnetic waves of radio frequency band and a conical cavity in which electromagnetic waves are excited. The processes of excitation of electromagnetic oscillations in a cavity with conducting walls, as well as the waves of the YangMills field are investigated. The multi-dimensional transient numerical model describing the processes of electromagnetic oscillations in a cavity with conducting wall created. Separately, the case of standing waves in the cavity with conducting walls considered. It is shown that the oscillations mode in the conducting resonator different from that in an ideal resonator, both in steady and unsteady processes. The mechanism of formation of traction for the changes in the space-time metric, the contribution of particle currents, the Yang-Mills and electromagnetic field proposed. It is shown that the Yang-Mills field calls the change of the dielectric constant, which leads to a change in the capacitance of the resonator. Thus, the parametric resonance occurs in the system, which leads to a strengthening of the Yang-Mills amplitude, and to the emergence of traction. We have developed a dynamic model, which enables optimal traction on a significant number of parameters. It was found that the thrust increases in the Yang-Mills field near the main resonance frequency. A model describing the excitation and emission of nonlinear waves of the Yang-Mills field was proposed. It is shown that nonlinear waves of the Yang-Mills field more effectively carry the momentum from the system in comparison with electromagnetic waves, and it explains the significant increase by several orders of thrust in the engines of the electromagnetic type, compared with the photon rocket
ßíäåêñ.Ìåòðèêà