Scientific Journal of KubSAU

Polythematic online scientific journal
of Kuban State Agrarian University
ISSN 1990-4665
AGRIS logo UlrichsWeb logo DOAJ logo

Name

Trunev Aleksandr Petrovich

Scholastic degree


Academic rank

—

Honorary rank

—

Organization, job position

A&E Trounev IT Consulting, Toronto, Canada
   

Web site url

—

Email

trounev@rogers.com


Articles count: 125

598 kb

EXITATION OF ELECTROMAGNETIC RADIATION, NUCLEAR REACTION AND PARTICLES DECAY BY THE ACCELERATION

abstract 1091505090 issue 109 pp. 1279 – 1300 29.05.2015 ru 1397
The article discusses the excitation of electromagnetic radiation, nuclear reactions and decays of particles by the acceleration of charges, atomic nuclei and the macroscopic volumes of matter. The motion of charged particles in a magnetic trap used for plasma confinement was computed. We propose a model of the electromagnetic radiation of a charge moving in a non-inertial reference frame in general relativity. We have also constructed a theory of perturbation with using a wave equation with small parameters, taking into account a characteristic radius of the trajectory of the electrons as they move in a magnetic field. It was found that in the first approximation, the radiation back-reaction force depends on the acceleration of the charge. For the simulating of processes in hadrons and nuclei we used Yang-Mills theory and the metric, describes the acceleration and rotating reference frame in general relativity. We consider the scalar glueball model for an arbitrary dependence of acceleration and angular velocity of the system on time. The numerical model of wave propagation in non-inertial reference frame for the geometry of system of one, two or three spatial dimensions was tested. In the numerical experiments shown that the acceleration of the system leads to instability, leading to an unlimited increase in the amplitude of waves, which is interpreted as a decay of system. It was found that there are critical values of acceleration above which the instability develops
2759 kb

SIMULATING AND PREDICTING GLOBAL CLIMATIC ANOMALIES SUCH AS EL NINO AND LA NINA

abstract 1101506102 issue 110 pp. 1546 – 1578 30.06.2015 ru 995
The paper discusses the modeling and prediction of the climate of our planet with the use of artificial intelligence AIDOS-X. We have developed a number of semantic information models, demonstrating the presence of the elements of similarity between the motion of the lunar orbit and the displacement of the instantaneous pole of the Earth. It was found that the movement of the poles of the Earth leading to the variations in the magnetic field, seismic events, as well as violations of the global atmospheric circulation and water, and particular to the emergence of episodes such as El Niño and La Niña. Through semantic information models studied some equatorial regions of the Pacific Ocean, as well as spatial patterns of temperate latitudes, revealed their relative importance for the prediction of global climatic disturbances in the tropical and temperate latitudes. The reasons of occurrence of El Niño Modoki and their relationship with the movement of elements of the lunar orbit in the long-term cycles are established. Earlier, we had made a forecast of the occurrence of El Niño episode in 2015. Based on the analysis of semantic models concluded that the expected El Niño classical type. On the basis of the prediction block AIDOS-X calculated monthly evolution scenario of global climate anomalies. In this paper, the analysis of the actual implementation forecast of El Niño since its publication in January 2015 - before June 2015. It is shown that the predicted scenario of climatic anomalies actually realized. Calculations of future climate scenarios with system «Aidos-X» recognition module indicate that further possible abnormal excess temperature indicators of surface ocean waters in regions Nino 1,2 and Nino3,4 for 2015 may be comparable with similar abnormalities in the catastrophic El Niño of 1997-1998.
791 kb

SIMULATION OF NONLINEAR COLOR OSCILLATIONS IN YANG-MILLS THEORY

abstract 1101506108 issue 110 pp. 1655 – 1674 30.06.2015 ru 742
The article presents the simulation of non-linear spatial-temporal color oscillations in Yang-Mills theory in the case of SU (2) and SU (3) symmetry. We examined three systems of equations derived from the Yang-Mills theory, which describes the transition to chaotic behaviour. These transitions are caused by nonlinear vibrations of colour, depending on the model parameters - the coupling constants and the initial wave amplitude. Such transitions to chaotic behaviour by increasing the parameters are characteristic of hydrodynamic turbulence. A model of spatial-temporal oscillations of the Yang-Mills theory in the case of three and eight colors. The results of numerical simulation show that the nonlinear interaction does not lead to a spatial mixing of colors as it might be in the case of turbulent diffusion. Depending on the system parameters there is a suppression of the amplitude of the oscillations the first three of five colors or vice versa - the first three five other colors. The kinetic energy fluctuations or shared equally between the color components, or dominated by the kinetic energy of repressed groups of colors. Note that the general property of physical systems described by nonlinear equations in the Yang-Mills theory and hydrodynamics is particularly strong in the formation of quark-gluon plasma and hadrons jets, when the Yang-Mills is involved in the formation of hydrodynamic flow. Note that there is a relationship between the Einstein and Yang-Mills theory, on the one hand, Einstein's equations and hydrodynamics - on the other. All of this points to the existence in the nature of a general mechanism of formation of a special type of turbulence - geometric turbulence
618 kb

YANG-MILLS FIELD AMPLIFIER

abstract 1111507077 issue 111 pp. 1200 – 1226 30.09.2015 ru 1386
The article presents a project of the Yang-Mills amplifier. Amplifier model is a multilayer spherical shell with increasing density towards the center. In the center of the amplifier is the core of high-density material. It is shown that in such a system, the amplitude of the Yang-Mills waves rises from the periphery to the center of several orders of magnitude. The role of the Yang-Mills field in the processes occurring in the nuclei of galaxies, stars and planets is discussed. The data modeling to strengthen the Yang-Mills field in the bowels of the planet, with an atomic explosion, and in some special devices such as the voltaic pile. To describe the mechanism of amplification chromodynamics field used as accurate results in Yang-Mills theory and numerical models developed based on an average and the exact equations as well. Among the exact solutions of the special role played by the centralsymmetric metric describing the contribution of the Yang-Mills field in the speed of recession of galaxies. Among the approximate numerical models can be noted the eight-scalar model we have developed for the simulation of non-linear color oscillations and chaos in the Yang-Mills theory. Earlier models were investigated spatio-temporal oscillations of the YangMills theory in the case of three and eight colors. The results of numerical simulation show that the nonlinear interaction does not lead to a spatial mixing of colors as it might be in the case of turbulent diffusion. Depending on the system parameters there is a suppression of the amplitude of the oscillations the first three by five colors or vice versa. The kinetic energy fluctuations or shared equally between the color components, or dominated by the kinetic energy of repressed groups of colors. In the present study, we found that amplification chromodynamic field leads to a sharp increase in the amplitude of the suppressed color, which can lead to an increase in entropy, excitation of nuclear reactions and decays particles
485 kb

YANG-MILLS FIELD CAPACITOR

abstract 1121508145 issue 112 pp. 2020 – 2040 30.10.2015 ru 1067
The article presents a project of the capacitor in the Yang-Mills theory. Model capacitor represents the equipotential surfaces separated by a space. To describe the mechanism of condensation chromodynamics field used numerical models developed based on an average of the Yang-Mills theory. In the present study, we used eight-scalar component model that in the linear case is divided into two groups containing three or five fields respectively. In contrast to classical electrodynamics, a static model of the Yang-Mills is not divided into independent equations because of the nonlinearity of the model itself. However, in the case of a linear theory separation is possible. It is shown that in this particular case, the Yang-Mills theory is reduced to Poisson theory, which describes the electrostatic and magnetostatic phenomena. In the present work it is shown that in a certain region of the parameters of the capacitor of the Yang-Mills theory on the functional properties of the charge accumulation and retention of the field is similar to the capacitor of the electrostatic field or a magnet in magnetostatics. This means that in nature there are two types of charges, which are sources of macroscopic Yang-Mills field, which are similar to the properties of electric and magnetic charges in the Poisson theory. It is shown that in Yang-Mills only one type of charge may be associated with the distribution density of the substance, while another type of charge depends on the charge distribution of the first type. This allows us to provide an explanation for the lack of symmetry between electric and magnetic charges
468 kb

GENERAL RELATIVITY AND THEORY OF ELECTROMAGNETIC DRIVE

abstract 1141510061 issue 114 pp. 815 – 839 30.12.2015 ru 825
The article presents the theory of the electromagnetic type of rocket motor. The apparatus consists of a magnetron and a conical cavity in which electromagnetic oscillations are excited. We explain the mechanism of trust in such a device based on Maxwell's theory and the Abraham force. We built a dynamic model of the motor and calculated the optimal parameters. It is shown, that the laws of conservation of momentum and energy for the rocket motor of electromagnetic type are true, taking into account the gravitational field. In simulation, the movement used the theory of relativity. The source of the motion in an electromagnetic drive is the mass conversion in various kinds of radiation. The optimization of the operating parameters of the device is done, namely by the excitation frequency, the magnitude of heat losses of electromagnetic energy by thermal radiation in the IR spectrum, the parameters of heat transfer and forced from the temperature dependence of the resistance of the material of the cavity walls. It was found that the effective conversion of electromagnetic energy in the trust force necessary to minimize the deviation of the excitation frequency of the primary resonance frequency of the cavity. The mechanism of formation of trust under change the metrics of space-time, taking into account the contribution of the Yang-Mills theory and electromagnetic field tensor of energymomentum has been proposed
276 kb

FARADAY'S MAGNETIC UNIVERSES

abstract 1141510105 issue 114 pp. 1449 – 1475 30.12.2015 ru 873
The question of construction of electrodynamics in the framework of the metric theory of gravitation is discussed. It is shown that the energy-momentum tensor of the electromagnetic field creates a space in which Faraday's law of induction is true. In such a space the scalar curvature vanishes identically, although space contains matter in the form of an electromagnetic field. It is proposed to call such space Faraday's magnetic universe as historically Faraday first established experimentally that "empty space is a magnet." We consider the metric of the expanding universe and metrics that describe the local gravitational field in the Newtonian theory. It was established that the field equations in spaces containing matter only in the form of an electromagnetic field in these metrics are reduced to hyperbolic equations describing the propagation of waves at the speed of light. However, in the field containing matter, the field equations are the equations of parabolic type, which describe diffusion or probability waves of Schrödinger quantum theory type. It is assumed that the potentials of the two metrics are connected, as with the potentials of the electromagnetic field, and the potentials of the Yang-Mills theory. Hence, the total output for all interactions law establishing the primacy of the gravitational field as the fundamental interaction, generating other interactions
434 kb

THEORY OF ELECTROMAGNETIC DRIVE WITH ELEMENTARY PARTICLES CURRENT AND VACUUM POLARIZATION

abstract 1151601080 issue 115 pp. 1246 – 1268 27.01.2016 ru 528
The article discusses a model of rocket motor of electromagnetic type, consisting of a source of electromagnetic radio frequency oscillations and the conical cavity, in which electromagnetic waves are excited. We have created a multi-dimensional transient numerical model describing the process of establishing electromagnetic oscillations in the resonator, taking into account the finite conductivity of the walls. Separately, the standing waves in the cavity with conducting walls have been simulated. It is shown that the oscillations mode in the conducting resonator different from that in an ideal resonator, both in a case of steady and unsteady waves. We have built a dynamic model taking into account the thermal conductivity and electrical conductivity of the walls, waves and particles emission and vacuum polarization. We have also developed a dynamic model enables to optimize a thrust force on a considerable number of parameters without the involvement of the hypotheses about the physics of the phenomenon. We run the optimization of the operating parameters of the device, namely by the excitation frequency, the frequency of the modulating signal, the magnitude of heat losses of electromagnetic energy by thermal radiation in the IR spectrum, the parameters of forced heat transfer and the temperature dependence of the resistance of the material of the cavity walls. It is found that the pulse modulation greatly improves the efficiency of conversion of electromagnetic energy into thrust. The mechanism of formation of traction, adjusting the metrics of space-time, the current contribution of elementary particles, the Yang-Mills and electromagnetic fields is proposed. It is shown that the contribution of the elementary particles in the thrust force is proportional to the electrical conductivity of the system multiplied by Abraham force
0 kb

DYNAMICS OF RELATIVISTIC PARTICLES IN THE GALAXY METRIC

abstract 1161602101 issue 116 pp. 1614 – 1636 29.02.2016 ru 0
In this study we investigate the dynamics of relativistic particles in the axially symmetric metrics. We have built metric having axial symmetry and contains two centers of gravity and a logarithmic singularity. The application received metrics to the movement of particles in galaxies is described. It is established that there are stable orbit in the metric with two centers of gravity, the particle velocity at which reaches the value v/ c ≈ 7.0 . Orbit radius varies widely, but remains substantially flat orbit. Unstable same movements are completed so that the particles leave the system. The hypothesis that this kind of relativistic objects can serve as sources of the magnetic fields of the planets, stars and galaxies has been proposed. The question of the realization in the galaxy metric of Einstein's hypothetical elevator in which there is a uniform gravitational field, simulating the accelerated movement of the elevator is described. A homogeneous gravitational field in a limited region of space was numerical simulated. It has been shown that this kind of accelerated objects generate relativistic effect in the form of a log potential, not diminishing with distance from the center of the system. It is assumed that such capabilities can be associated with the Higgs field responsible for the occurrence of the inertial mass of the elementary particles
0 kb

DYNAMICAL MODEL OF ELECTROMAGNETIC DRIVE

abstract 1161602105 issue 116 pp. 1671 – 1694 29.02.2016 ru 0
The article discusses the dynamic model of the rocket motor electromagnetic type, consisting of a source of electromagnetic waves of radio frequency band and a conical cavity in which electromagnetic waves are excited. The processes of excitation of electromagnetic oscillations in a cavity with conducting walls, as well as the waves of the YangMills field have been investigated. Multi-dimensional transient numerical model describing the processes of establishment of electromagnetic oscillations in a cavity with the conducting wall was created Separately, the case of standing waves in the cavity with conducting walls been tested. It is shown that the oscillation mode in the conducting resonator different from that in an ideal resonator, both in the steady and unsteady processes. The mechanism of formation of traction for the changes in the space-time metric, the contribution of particle currents, the Yang-Mills and electromagnetic field proposed. It is shown that the effect of the Yang-Mills field calls change the dielectric properties of vacuum, which leads to a change in capacitance of the resonator. Developed a dynamic model, which enables optimal traction on a significant number of parameters. It was found that the thrust increases in the Yang-Mills field parameters near the main resonance frequency. In the presence of thermal fluctuations and the Yang-Mills field as well the traction force changes sign, indicating the presence of various oscillation modes
ßíäåêñ.Ìåòðèêà