Scientific Journal of KubSAU

Polythematic online scientific journal
of Kuban State Agrarian University
ISSN 1990-4665
AGRIS logo UlrichsWeb logo DOAJ logo
Search by author's name Search by title
465 kb

THE TIME-OPTIMAL DIAGRAM OF MOVEMENT OF THE EXECUTIVE BODY OF THE PRECISION DIRECT CURRENT MOTOR WITH ELASTIC SHAFTING WITH CONSTRAINS OF MAXIMUM CURRENT AND THE FIFTH DERIVATIVE OF THE SPEED

abstract 1341710044 issue 134 pp. 534 – 550 29.12.2017 ru 416
The time-optimal diagram of movement of the executive body of the precision DC drive with elastic shafting with constrains of maximum current and the fifth derivative of the speed has been designed. The algorithm has been developed to determine the parameters of the time-optimal diagram of movement of the executive body of the precision DC drive with elastic shafting with constrains of maximum current and the fifth derivative of the speed. The region of existence of the time-optimal diagram of movement of the executive body of the precision DC drive with elastic shafting with constrains of maximum current and the fifth derivative of the speed has been set. According to the results of the numeral experiment, the dependences of the duration of the cycle of movement of the executive body of the drive from prescribed displacement (rotation angle) for different values of the fifth derivative of the speed have been plotted
425 kb

NON-STATIONARY 2D MODEL OF THE GRAVITATIONAL CONVECTION IN ELECTRODIALYSIS OF AMPHOLYTECONTAINING SOLUTIONS

abstract 1231609116 issue 123 pp. 1697 – 1711 30.11.2016 ru 418
An analysis of the experimental data obtained by the authors, as well as reference books, allowed to hypothesize about the essential role of gravitational convection in electromembrane systems with ampholytes even in underlimiting current regimes. The article is devoted to the development of the mathematical model of ion transport in a flow elecrtomembrane system during electrodialysis of ampholyte-containing solutions with taking into account a possible appearance of gravitational convection, in particular, due to nonisothermal protonation–deprotonation reactions of ampholytes. The article presents the boundary value problem that is the new mathematical model for diffusion, convection and electromigration of four components of the solution (ions of sodium, dihydrogen phosphate and hydrogen, as well as molecules of orthophosphoric acid) in a half of an electrodialysis desalination channel, adjacent to an anion-exchange membrane. The membrane is considered as ideally selective and homogeneous. The system of partial differential equations, that is the base of the model, also includes equations of Navier-Stokes, material balance, convective heat conduction and the electroneutrality condition. The system of equations is supplemented by a number of natural and original boundary conditions. A distinctive feature of this study is the absence of assumptions about the equilibrium of chemical reactions in a diffusion layer. The results of the study can be used for the development of environmentally rational and resource saving membrane technologies for a processing of products of agro-industrial complex
852 kb

SIMULATION OF A PLASMA CHANNEL AND TRACK IN MOTION OF PLASMA SOURCE IN CONDUCTIVE ENVIRONMENT

abstract 1321708129 issue 132 pp. 1492 – 1516 31.10.2017 ru 418
A model is developed that describes the formation of the plasma channel and the trace when moving in a conducting medium of various objects that are sources of plasma - ball lightning, plasmoids, charged particles, and so on. To describe the contribution of conduction currents, we modified the standard electrostatic equation considering the vortex component of the electric field. As a result of this generalization, a system of parabolictype nonlinear equations is formulated that describes the formation of the plasma channel and the track behind the moving object. In this formulation, the problem of the formation of the lightning channel in weak electric fields, characteristic for atmospheric discharges of cloudearth, is solved. Numerical simulation of the motion of plasma sources in a region with a ratio of the sizes 1/100, 1/200 makes it possible to find the shape of the channel and the total length of the track, as well as the branching regimes. It was previously established that there are three streamer branching mechanisms. The first mechanism is associated with the instability of the front, which leads to the separation of the head of the streamer into two parts. The second mechanism is related to the instability of the streamer in the base region, which leads to the branching of the streamer with the formation of a large number of lateral streamers closing the main channel of the streamer to the cathode. The third branching mechanism, observed in experiments, is associated with the closure of the space charge to the anode through the streamer system. These branching mechanisms are also revealed when the leader is spread. Numerical experiments have revealed a new channel branching mechanism and a trace behind a moving plasma object, caused by the conductivity of the medium
3138 kb

IDENTIFICATION OF VARIETIES OF IRISES BY THEIR APPEARANCE WITH THE USE OF ASC-ANALYSIS AND "EIDOS" INTELLECTUAL SYSTEM (REPOSITORY UCI DATA)

abstract 1231609121 issue 123 pp. 1801 – 1835 30.11.2016 ru 421
The creation of artificial intelligence systems is one of important and perspective directions of development of modern information technology. Since there are many alternatives of mathematical models of systems of artificial intelligence, there is a need to assess the quality of these models, which requires their comparison. To achieve this goal we require free access to the source data and methodology, which allows to convert these data into a form needed for processing in artificial intelligence. A good choice for these purposes is a database of test problems for systems of artificial intelligence of repository of UCI. In this work we used the database "Iris Data Set" from the bank's original task of artificial intelligence – UCI repository, which solved the problem of formalization of the subject area (development of classification and descriptive dials and graduations and the encoding of the source data, resulting training sample, essentially representing a normalized source data), synthesis and verification statistical and system-cognitive models of the subject area, identify colors with classes, which serve varieties of Iris, as well as studies of the subject area by studying its model. To solve these problems we used the automated system-cognitive analysis (ASC-analysis) and its programmatic Toolkit – intellectual system called "Eidos"
380 kb

LOGARITHMIC LAW AND EMERGENCE PARAMETER OF CLASSICAL AND QUANTUM SYSTEMS

abstract 1201606110 issue 120 pp. 1659 – 1685 30.06.2016 ru 422
The work discusses various examples of physical systems which state is determined by the logarithmic law - quantum and classical statistical systems and relativistic motion in multidimensional spaces. It was established that the Fermi-Dirac statistics and BoseEinstein-Maxwell-Boltzmann distribution could be described by a single equation, which follows from Einstein's equations for systems with central symmetry. We have built the rate of emergence of classical and quantum systems. The interrelation between statistical and dynamic parameters in supergravity theory in spaces of arbitrary dimension was established. It is shown that the description of the motion of a large number of particles can be reduced to the problem of motion on a hypersphere. Radial motion in this model is reduced to the known distributions of quantum and classical statistics. The model of angular movement is reduced to a system of nonlinear equations describing the interaction of a test particle with sources logarithmic type. The HamiltonJacobi equation was integrated under the most general assumptions in the case of centrally-symmetric metric. The dependence of actions on the system parameters and metrics was found out. It is shown that in the case of fermions the action reaches extremum in fourdimensional space. In the case of bosons there is a local extremum of action in spaces of any dimension
150 kb

PROBABILISTIC MODEL OF THE PROCESS OF REDUCTION OF THE PRICE FOR PLANNED ACTIONS

abstract 1321708026 issue 132 pp. 324 – 334 31.10.2017 ru 425
The soil fertility increase issues are very relevant now. Intensive development of agriculture cannot be made effectively without complex actions for farmlands protection from different types of degradations. On the one hand, it is necessary to ensure the maximum harvest of crops, and to preserve and increase the fertility of the soil and prevent negative anthropogenic impact on the environment on the other. For an extended reproduction of soil fertility, a system of measures is necessary for introduction of mineral and organic fertilizers into the soil, agrotechnical and reclamation methods, stimulation of humus formation processes, and so on. Therefore, methods are important that allow us to estimate the planned measures in advance to improve soil fertility and to eliminate environmental damage. In the article, the estimated parameters are treated by random variables. This allows us to consider the uncertainty in terms of probability distributions. It is offered a probabilistic model of the process of reducing the price of the proposed activity. Mathematical expectation, variance, distribution density of the considered random variable probabilities as the main characteristics of the object state price are calculated. The model can be used to address issues of rational use of land, scientifically based land management organization, when drafting land reclamation project
329 kb

MANY-BODY PROBLEM IN THE METRIC OF CIRCULAR DISTRIBUTED SOURSES

abstract 1231609132 issue 123 pp. 1985 – 2006 30.11.2016 ru 427
In this article we consider the many-body problem in general relativity in the case of the distribution of N singularities on the circle. It specifies the exact solution of the problem for an arbitrary distribution of singularities. It is shown that the static metric of N singularities corresponds to Newton's theory of N centers of gravity, moving around the central body in a circular orbit in a non-inertial frame of reference, rotating with a period of bodies revolving. We consider the statement of the problem of many bodies distributed at the initial time on the circle. In numerical calculations, we studied the properties of the gravitational potential in the problem of establishing a static condition in which multiple singularities retain the initial position on the circle. This is achieved due to relativistic effects, which have no analogues in Newton's theory of gravitation. Using the properties of relativistic potentials justified transition from the relativistic motion of the particles to the dynamic equations in the classical theory. A system of non-linear parabolic equations describing the evolution of the metric in the Ricci flow proposed. The problem of the calculation of the potentials in the Ricci flow formulated. The application of the theory to describe the ring galaxy, planetary rings and the asteroid belt considered
604 kb

SIMULATION OF TURBULENT FLOW IN A CAVITY ON THE NAVIER-STOKES EQUATIONS

abstract 1191605079 issue 119 pp. 1111 – 1133 31.05.2016 ru 429
The article deals with the numerical solution of the Navier-Stokes equations describing turbulent flow in a rectangle cavity or in a cuboid with one open face at high Reynolds numbers. It is known, that there is a mechanism of turbulent mixing in natural systems, leading to an increase in the viscosity of the continuous medium. In this regard, we suggest methods of regularization of the Navier-Stokes equations, similar to the natural mechanisms of mixing. We proposed the models based on the properties of the turbulent environment. For this we modified the continuity equation taking into account the pressure fluctuations. It is shown that the incompressibility condition is can be violated due to pressure fluctuation even for flows with low Mach numbers. Modification of continuity equation by the introduction of turbulent viscosity allows the regularization of the Navier-Stokes equations to solve the problems with rapidly changing dynamic parameters. It was shown that the modification of the continuity equation taking into account turbulent fluctuations leads to a system of nonlinear equations of parabolic type. A numerical model of turbulent flow in the cavity with the rapid change in the parameters of the main flow developed. Discovered type of instability of the turbulent flow associated with the rapid changes in the main flow velocity. In numerical simulations found that due to the acceleration of the main flow there is the unsteady vortex flow in the cavity, which is characterized by the integral of energy not vanishing with time, vibrations that have a certain period, depending on the turbulent viscosity
318 kb

ELECTRON STRUCTURE AND THE YANGMILLS THEORY

abstract 1171603061 issue 117 pp. 951 – 976 31.03.2016 ru 438
We have studied the question of the electromagnetic structure of a relativistic electron in connection with the Yang-Mills theory. From the Lorentz electrodynamics equations of and Dirac electron theory derived an equation describing nonlinear waves of the scalar potential. It is shown that this equation is similar to the equation describing the dynamics of the condensate in the Yang-Mills theory. There is also the connection to the Schrödinger equation: the scalar potential is a complex function, similar to the wave function in the Schrödinger theory. The model discussed electron is a solitary wave that occurs in the electromagnetic field. This wave has the properties of charged particles, able to interact with the external electric and magnetic field. An analytical solution describing solitary electromagnetic waves traveling at a speed less than the speed of light has been obtained. The existence of solitary electromagnetic waves consistent with the Hertz's hypothesis that suggested that cathode rays are a form of wave motion in an electromagnetic field. The proposed model of the electromagnetic structure of the electron thus solves the problem of duality wave-particle, which historically arose in the interpretation of experiments with cathode rays. Numerical modeling of electromagnetic electron structure shows that the initial state such as a spherical shell is unstable and disintegrates into a pair of nonlinear waves that leave the system with the speed of light. In the decay of the initial state concentrated in the neighborhood of the origin, waves of complex part of potential disappear with time, but a real part of the potential it tends to equilibrium
329 kb

ABOUT RECONNECTION PHENOMENON IN THE LOWER LAYERS OF A MAGNETIC TUBE. THEORY

abstract 1271703047 issue 127 pp. 693 – 712 31.03.2017 ru 439
It was shown before [1,2], that variants of intensity of γ-quantas of axion origin, induced by the variants of the magnetic field in the the tacho wedge through the termomagnetic Ettinshausen-Nernst effect, cause variations of solar luminance and ultimately characterise the changes of active and calm state of the Sun. It is shown in the article in which way the areas of sunspots are generated by the action of global dynamo in the convective zone, or in other words, which fundamental processes connect the sunspots and solar cycles with the large-scaled magnetic field of the Sun
ßíäåêñ.Ìåòðèêà