Scientific Journal of KubSAU

Polythematic online scientific journal
of Kuban State Agrarian University
ISSN 1990-4665
AGRIS logo UlrichsWeb logo DOAJ logo
Search by author's name Search by title
252 kb

ABOUT THE NEW PARADIGM OF MATHEMATICAL METHODS OF RESEARCH

abstract 1221608056 issue 122 pp. 806 – 831 31.10.2016 ru 589
In 2011 – 2015, the scientific community was represented by a new paradigm of mathematical methods of research in the field of organizational and economic modeling, econometrics and statistics. There was a talk about a new paradigm of applied statistics, mathematical statistics, mathematical methods of economics, the analysis of statistical and expert data in problems of economics and management. We consider it necessary to develop organizational and economic support for solving specific application area, such as the space industry, start with a new paradigm of mathematical methods. The same requirements apply to the teaching of the respective disciplines. In the development of curricula and working programs, we must be based on a new paradigm of mathematical methods of research. In this study, we present the basic information about a new paradigm of mathematical methods of research. We start with a brief formulation of a new paradigm. The presentation in this article focuses primarily on the scientific field of "Mathematical and instrumental methods of economy", including organizational and economic and economic-mathematical modeling, econometrics and statistics, and decision theory, systems analysis, cybernetics, operations research. We discuss the basic concepts. We talk about the development of a new paradigm. We carry out a detailed comparison of the old and the new paradigms of mathematical methods of research. We give information about the educational literature, prepared in accordance with the new paradigm of mathematical methods of researches
225 kb

NONPARAMETRIC KERNEL ESTIMATORS OF PROBABILITY DENSITY IN THE DISCRETE SPACES

abstract 1221608057 issue 122 pp. 832 – 854 31.10.2016 ru 1003
Some estimators of the probability density function in spaces of arbitrary nature are used for various tasks in statistics of non-numerical data. Systematic exposition of the theory of such estimators has been started in our articles [3, 4]. This article is a direct continuation of these works [3, 4]. We will regularly use references to conditions and theorems of the articles [3, 4], in which introduced several types of nonparametric estimators of the probability density. We have studied linear estimators. In this article, we consider particular cases - kernel density estimates in discrete spaces. When estimating the density of the one-dimensional random variable, kernel estimators become the Parzen-Rosenblatt estimators. Under different conditions, we prove the consistency and asymptotic normality of kernel density estimators. We have introduced the concept of "preferred rate differences" and are studied nuclear density estimators based on it. We have introduced and studied natural affinity measures which are used in the analysis of the asymptotic behavior of kernel density estimators. Kernel density estimates are considered for sequences of spaces with measures. We give the conditions under which the difference between the densities of probability distributions and of the mathematical expectations of their nuclear estimates uniformly tends to 0. Is established the uniform convergence of the variances. We find the conditions on the kernel functions, in which take place these theorems about uniform convergence. As examples, there are considered the spaces of fuzzy subsets of finite sets and the spaces of all subsets of finite sets. We give the condition to support the use of kernel density estimation in finite spaces. We discuss the counterexample of space of rankings in which the application of kernel density estimators can not be correct
573 kb

MATTER GENERATION FROM SINGULARITIES COLLIDING IN THE RICCI FLOWS

abstract 1221608069 issue 122 pp. 982 – 1006 31.10.2016 ru 502
In this article, we investigate the problem of creation of matter in the collision of particles, presented by singularities of the gravitational field. A system of nonlinear parabolic equations describing the evolution of the axially symmetric metrics in the Ricci flow derived. A model describing the creation of matter in the collision and merger of the particles in the Ricci flow proposed. It is shown that the theory that describes the Ricci flow in the collision of black holes is consistent with EinsteinInfeld theory, which describes the dynamics of the material particles provided by the singularities of the gravitational field. As an example, we consider the metric having axial symmetry and which contains two singularities simulating particles of finite mass. It is shown that the static metric with two singularities corresponding to in Newton's theory of gravity two particles moving around the center of mass in circular orbits in a non-inertial frame of reference, rotating with a period of two-body system rotation. We have numerically investigated the change of the metric in the collision of particles with subsequent expansion. In numerical experiments, we have determined that the collision of the particles in the Ricci flow leads to the formation of two types of matter with positive and negative energy density, respectively. When moving singularities towards each other in the area between the particles the matter is formed with negative energy density, and in the region behind the particles - with positive density. In the recession of the singularities, the matter with positive energy density is formed in the area between the particles. The question of the nature of baryonic matter in the expanding universe is discussed
540 kb

RESTRICTED MANY-BODY PROBLEM IN THE RICCI FLOWS IN GENERAL RELATIVITY

abstract 1221608070 issue 122 pp. 1007 – 1032 31.10.2016 ru 454
In this article, the restricted problem of three and more bodies in the Ricci flow in the general theory of relativity considered. A system of non-linear parabolic equations describing the evolution of the axially symmetric metrics in the Ricci flow proposed. A model describing the motion of particles in the Ricci flow derived. It is shown that the theory describing the Ricci flow in the many-body problem is consistent with the Einstein-Infeld theory, which describes the dynamics of the material particles provided by the singularities of the gravitational field. As an example, consider the metric having axial symmetry and contains two singularities simulating particles of finite mass. It is shown that the static metric with two singularities corresponds to Newton's theory of the two centers of gravity, moving around the center of mass in circular orbits in a noninertial frame of reference, rotating with a period of bodies. We consider the statement of the problem of many bodies distributed at the initial time on the axis of symmetry of the system. In numerical calculations, we studied the properties of the gravitational potential in the problem of establishing a static condition in which multiple singularities retain the initial position on the axis of the system. This is achieved due to relativistic effects, which have no analogues in Newton's theory of gravitation. Using the properties of relativistic potentials we have justified transition from the relativistic motion of the particles to the dynamic equations in the classic theory
555 kb

COLOR MATTER GENERATION IN THE RICCI FLOW IN GENERAL RELATIVITY

abstract 1221608082 issue 122 pp. 1232 – 1256 31.10.2016 ru 494
In this article, we investigate the restricted problem of many bodies with a logarithmic potential in the general theory of relativity. We consider the metric having axial symmetry and containing a logarithmic singularity. In numerical calculations, we studied the properties of the gravitational potential in the problem of establishing a static condition in which multiple singularities retain the initial position on the axis of the system. This is achieved due to relativistic effects, which have no analogues in Newton's theory of gravitation. The motion of relativistic particles in a logarithmic potential sources distributed on the surface of a torus simulated. It is shown that the trajectory of the particles in these systems form a torus covered with needles. It was found, that the Ricci flow in the general theory of relativity could be born three kinds of matter - positive and negative energy density, as well as the color of matter, the gravitational potential of which is complex. It has been shown that this type of material is associated with the manifestation of the quantummechanical properties, which is consistent with the hypothesis of the origin of Schrodinger quantum mechanics. It is assumed that the most likely candidate for the role of the color of matter is the system of quarks as to describe the dynamics of quarks using the logarithmic potential, and the quarks themselves are not observed in the free state
2310 kb

FUZZY MULTICLASS GENERALIZATION OF THE CLASSICAL F-MEASURE OF PLAUSIBILITY MODELS BY VAN RIJSBERGEN IN ASK-THE ANALYSIS AND THE SYSTEM OF "EIDOS"

abstract 1231609001 issue 123 pp. 1 – 29 30.11.2016 ru 686
Classic quantitative measure of the reliability of the models: F-measure by van Rijsbergen is based on counting the total number of correctly and incorrectly classified and not classified objects in the training sample. In multiclass classification systems, the facility can simultaneously apply to multiple classes. Accordingly, when the synthesis of the model description is used for formation of generalized images of many of the classes it belongs to. When using the model for classification, it is determined by the degree of similarity or divergence of the object with all classes, and a true-positive decision may be the membership of the object to several classes. The result of this classification may be that the object is not just rightly or wrongly relates or does not relate to different classes, both in the classical F-measure, but rightly or wrongly relates or does not relate to them in varying degrees. However, the classic F-measure does not count the fact that the object may in fact simultaneously belongs to multiple classes (multicrossover) and the fact that the classification result can be obtained with a different degree of similarity-differences of object classes (blurring). In the numerical example, the author states that with true-positive and true-negative decisions, the module similarities-differences of the object classes are much higher than for false-positive and false-negative decisions. It would therefore be rational to the extent that the reliability of the model to take into account not just the fact of true or false positive or negative decisions, but also to take into account the degree of confidence of the classifier in these decisions. In the intellectual system called "Eidos", which is a software toolkit for the automated system-cognitive analysis (ASC-analysis), we use initially proposed by its developers measure of the reliability of the models, which is essentially a fuzzy multiclass generalization of the classical F-measure (it is proposed to call it the L-measure). In this article, L-measure is mathematically described and its application is demonstrated on a simple numerical example
360 kb

MANAGEMENT OF THE FINANCIAL AND THE ECONOMIC STATE OF A COMPANY USING A MATHEMATICAL MODEL

abstract 1231609017 issue 123 pp. 271 – 282 30.11.2016 ru 798
This article focuses on the mathematical modeling of evaluation of financial and economic activities of a company and on definition (based on this model) of such balance settings (line F1 and F2) which would make financial-economic indicators of the activities of the organization optimal, and the total cumulative score was the maximum. The knowledge and the use of the optimal parameters of the balance will allow the managers to plan strategy for the future development of the company. The article analyzes the dependencies of each of the 15 basic indicators (profitability, turnover, financial stability, liquidity and solvency) of financial and economic activity of the organization on the balance parameters. The optimal values of the parameters of the balance and the main indicators of financial and economic activities of the organization have been found. We have also built a mathematical model of optimal control of financial and economic indicators in the form of a problem of mathematical programming. For example, for the company called "Nika" it is shown the possibility of improving estimation of financial and economic condition of the organization. Knowledge of the optimal parameters of the balance will allow the managers to plan strategy for the future development of the organization. To solve this problem we have used the method of generalized reduced gradient implemented in Excel, with which there was found a maximum of the objective function for the article restrictions. The article describes the analysis algorithm of the optimization problem. A common assessment was carried out in stages, based on the calculation algorithm of sequentially improved target functions
362 kb

THE INFLUENCE OF THE REACTION OF DISSOCIATION / RECOMBINATION OF MOLECULES OF WATER ON TRANSPORTATION OF ELECTROLYTE 1: 1 IN MEMBRANE SYSTEMS IN THE DIFFUSION LAYER. PART 3. EVALUATION OF THE POSSIBILITY OF THE EMERGENCE OF GRAVITATIONAL CONVECTION

abstract 1231609018 issue 123 pp. 283 – 297 30.11.2016 ru 596
This article is a continuation of the previous works of the authors [The influence of reaction dissociation / recombination of molecules of water on transportation of electrolyte 1:1 in the membrane systems in the diffusion layer. Part 1. Mathematical model // Scientific journal of Kuban State Agrarian University, 2016. No. 07(121) and The influence of the reaction of dissociation / recombination of molecules of water on transportation of electrolyte 1: 1 in membrane systems in the diffusion layer. Part 2. Asymptotic analysis // Scientific journal of Kuban State Agrarian University, 2016. – №08(122)] and devoted to assessing the possibility of gravitational convection due to the recombination of hydrogen and hydroxyl ions. The article presents the solution of a boundary-value problem, which is a mathematical model of electrodiffusion for the four types of ions at the same time (two ions of salts and hydrogen and hydroxyl ions) in the diffusion layer in electro-membrane systems with ideal selective membrane, with the heat transfer equation and the Navier-Stokes equation. The article shows the possibility of the emergence of gravitational convection due to the exothermic reaction of recombination of water molecules in the depth of the solution. The article considered the reaction of recombination of hydrogen ions and hydroxyl, although the main results can be applied, after appropriate modifications, and to amfolit-containing solutions, such as wine, juices, dairy products, microbiological processing of biomass (amino acids, anions of polybasic carboxylic acids), municipal effluent (anions of phosphoric acid), etc.
254 kb

THE ROLE OF QUANTUM ENTANGLEMENT IN TASKS OF THE GAMES THEORY

abstract 1231609019 issue 123 pp. 298 – 307 30.11.2016 ru 647
This article discusses an economic game called "The struggle for markets". We have generated a mathematical model of quantum realization of this game. For clarity, the algorithms are derived for soft and hard quantum games for assessing the impact of the degree of entanglement to work and the result of the algorithm. There are step-by-step instructions for the sequence of actions and operations to create a quantum model of the game. The aim is to assess the influence of the degree of entanglement on work algorithms. Also, we investigate the influence of quantum entanglement on the win for two or more players. The article gives a comparison with classical results
279 kb

ASYMPTOTICS OF QUANTIZATION, SELECTION OF THE NUMBER OF GRADATIONS IN THE SOCIOLOGICAL QUESTIONNAIRES AND TWO-LEVEL MODEL OF INVENTORY MANAGEMENT

abstract 1231609045 issue 123 pp. 660 – 687 30.11.2016 ru 512
We consider an approach to the transition from continuous to discrete scale which was defined by means of step of quantization (i.e. interval of grouping). Applied purpose is selecting the number of gradations in sociological questionnaires. In accordance with the methodology of the general stability theory, we offer to choose a step so that the errors, generated by the quantization, were of the same order as the errors inherent in the answers of respondents. At a finite length of interval of the measured value change of the scale this step of quantization uniquely determines the number of gradations. It turns out that for many issues gated it is enough to point 3 - 6 answers gradations (hints). On the basis of the probabilistic model we have proved three theorems of quantization. They are allowed to develop recommendations on the choice of the number of gradations in sociological questionnaires. The idea of "quantization" has applications not only in sociology. We have noted, that it can be used not only to select the number of gradations. So, there are two very interesting applications of the idea of "quantization" in inventory management theory - in the two-level model and in the classical Wilson model taking into account deviations from it (shows that "quantization" can use as a way to improve stability). For the two-level inventory management model we proved three theorems. We have abandoned the assumption of Poisson demand, which is rarely carried out in practice, and we give generally fairly simple formulas for finding the optimal values of the control parameters, simultaneously correcting the mistakes of predecessors. Once again we see the interpenetration of statistical methods that have arisen to analyze data from a variety of subject areas, in this case, from sociology and logistics. We have another proof that the statistical methods - single scientificpractical area that is inappropriate to share by areas of applications
ßíäåêñ.Ìåòðèêà