Scientific Journal of KubSAU

Polythematic online scientific journal
of Kuban State Agrarian University
ISSN 1990-4665
AGRIS logo UlrichsWeb logo DOAJ logo
Search by author's name Search by title
254 kb

GRAVITATIONAL WAVES AND QUANTUM THEORY

abstract 0961402078 issue 96 pp. 1151 – 1166 28.02.2014 ru 1124
In this article we consider gravitation theory in multidimensional space. The model of the metric satisfying the basic requirements of quantum theory is proposed. It is shown that gravitational waves are described by the Liouville equation. Schrödinger conjecture about the Schrödinger wave function and gravitational waves has been proved
276 kb

GRAVITATIONAL WAVES AND SCHRODINGER QUANTUM THEORY

abstract 0961402081 issue 96 pp. 1194 – 1211 28.02.2014 ru 1178
In this paper, we consider gravitation theory in multidimensional space. The model of the metric satisfying the basic requirements of quantum theory is proposed. It is shown that gravitational waves are described by the Liouville equation. Conjecture about the Schrödinger wave function due to gravitational waves was proved. Solutions of the gravitational field equations similar to the de Broglie waves have been constructed.
418 kb

GRAVITATIONAL WAVES AND STATIONARY STATES OF QUANTUM AND CLASSICAL SYSTEMS

abstract 0971403090 issue 97 pp. 1299 – 1322 31.03.2014 ru 1211
In this paper, we consider gravitation theory in multidimensional space. The model of the metric satisfying the basic requirements of quantum theory is proposed. It is shown that gravitational waves are described by the Liouville equation and the Schrodinger equation as well. The solutions of the Einstein equations describing the stationary states of arbitrary quantum and classical systems with central symmetry have been obtained. Thus, it is proved that atoms and atomic nuclei can be represented as standing gravitational waves
567 kb

GRAVITATIONAL WAVES IN THE RICCI FLOW FROM SINGULARITIES MERGER

abstract 1211607121 issue 121 pp. 1907 – 1928 30.09.2016 ru 605
In this study, we investigate the problem of the emission of gravitational waves produced in collisions of particles submitted to the singularities of the gravitational field. A system of non-linear parabolic equations describing the evolution of the axially symmetric metrics in the Ricci flow derived. A model describing the emission of gravitational waves in the collision and merger of the particles in the Ricci flow proposed. It is shown that the theory of the Ricci flow describes the problem of black holes merge, consistent with Einstein-Infeld theory, which describes the dynamics of the material particles provided by the singularities of the gravitational field. As an example, we consider the metric having axial symmetry and comprising two singularities simulating particles of finite mass. We have numerically investigated the change of the metric in the collision and merger of the particles. The initial and boundary conditions using the exact solution of the static problem, so the collision persist particularly metrics caused by the presence of particles. In numerical experiments determined that the collision of the particles in the Ricci flow leads to the formation of gravitational waves, similar in structure to the waves, registered in the LIGO experiment. Consequently, we can assume that the observed gravity waves caused mainly by transients associated with the change in the metric of a system. The influence of the parameters of the problem - the speed and mass of the particles, on the amplitude and intensity of the emission of gravitational waves was numerically simulated. We have found chaotic behavior of gravitational potentials at the merger of the singularities in the Ricci flow
421 kb

GRAVITY FIELD IN THE VICINITY OF STARS AND GEOMETRIC TURBULENCE

abstract 0991405106 issue 99 pp. 1508 – 1529 30.05.2014 ru 964
In this article, the solutions of Einstein's equations for empty space, describing the gravitational field near the Sunlike star have been investigated. We have accounted the own field of the star, the motion of the star around the galactic center, the motion of the galaxy relative to the center of the local supercluster and the expansion of the Universe. The resulting gravitational field near the star has a complex structure, which leads to large-scale geometric turbulence linking large and small scales in this problem
395 kb

HADAMARD MATRICES

abstract 1261702033 issue 126 pp. 471 – 483 28.02.2017 ru 2278
In 1893, the French mathematician J. Adamar raised the question: given a matrix of fixed order with coefficients not exceeding modulo this value, then what is the maximum modulo value can take the determinant of this matrix? Adamar fully decided this question in the case when the coefficients of the matrix are complex numbers and put forward the corresponding hypothesis in the case when the matrix coefficients are real numbers modulo equal to one. Such matrices satisfying the Hadamard conjecture were called Hadamard matrices, their order is four and it is unknown whether this condition is sufficient for their existence. The article examines a natural generalization of the Hadamard matrices over the field of real numbers, they are there for any order. This paper proposes an algorithm for the construction of generalized Hadamard matrices, and it is illustrated by numerical examples. Also introduces the concept of constants for the natural numbers are computed values of this constant for some natural numbers and shown some applications of Hadamard constants for estimates on the top and bottom of the module of the determinant of this order with arbitrary real coefficients, and these estimates are in some cases better than the known estimates of Hadamard. The results of the article are associated with the results of the con on the value of determinants of matrices with real coefficients, not exceeding modulo units
271 kb

HADRONS MASS SPECTRUM AND THE GLUON THERMODYNAMICS

abstract 0911307104 issue 91 pp. 1548 – 1561 30.09.2013 ru 1382
It is shown, that the hadron mass spectrum can be associated with the energy of the excited states of gluon condensate. Gluon thermodynamics is built on the basis of this concept. The transition temperature of hadronic matter to the quark-gluon plasma calculated on the basis of this model is about 175,856 MeV, which is consistent with experimental data and calculations based on lattice quantum chromodynamics (LQCD)
472 kb

HADRONS METRICS SIMULATION ON THE YANG-MILLS EQUATIONS

abstract 0841210068 issue 84 pp. 865 – 879 28.12.2012 ru 894
In this article we consider the Yang-Mills theory in connection with the Einstein and Maxwell equations. The model of a metric satisfying the basic requirements of particle physics and cosmology is proposed. Firstly we consider the example of a purely temporary solution of the Yang-Mills equations in the space of torsion-free and the basic equations of the model of the cosmological scale. Some exact solutions and numerical model in a case, when density of baryonic matter and electromagnetic energy density remains constant over time been investigated. We obtained the solution combines the properties of Einstein's model, and Friedman’s model as well, describes the universe as a time-dependent metric, and with a constant density distribution of baryonic matter and electromagnetic field. Secondly, the model of the proton scale proposed. We proved that the metric of the observable universe is associated with a metric of the periodic lattice, given by the Weierstrass function. We find that there may be a spherical particle, which expand in sync with the space of the universe. Therefore, from the point of view of the outside observer they seem having static form like protons.
209 kb

HEEDING OF HETEROGENEITY OF ENVIRONMENT WHEN CALCULATING A MAGNETIC FIELD

abstract 0951401052 issue 95 pp. 925 – 934 30.01.2014 ru 919
The formula for definition of magnitude and direction of secondary sources of a field as surface currents for the registration of heterogeneity of environment is found. We have shown that it is possible to solve non-linear field problems, using the mathematical deduc-tions shown in this article
231 kb

HIGH STATISTICAL TECHNOLOGIES

abstract 1051501002 issue 105 pp. 14 – 38 30.01.2015 ru 1006
In practical use of methods of applied statistics we do not apply separate methods for describing data, estimation, testing hypotheses, but we must use deployed whole procedures - the so-called "statistical technology". The concept of "statistical technology" is similar to the concept of "technological process" in the theory and practice of organization of production. It is quite natural that some statistical technology can better meet the needs of the researcher (user, statistics) than others, some - are modern, and others - outdated, some properties are studied, and the others - no. It is important to stress that a qualified and efficient use of statistical methods - this is not one single statistical hypothesis testing and estimation of characteristics or parameters of a given distribution from fixed family. This kind of operations - only the individual building blocks that make up the statistical technology. The procedure of the statistical data analysis - is an information process, in other words, one or other information technology. Statistical information is subject to a variety of operations (series, parallel, or more complex schemes). In this article we discuss statistical technologies and the problem of "docking" algorithms. We introduce the concept of "high statistical technologies" and then we prove the necessity of their development and application. As the examples we have given the researches of Institute of high statistical technologies and econometrics of Bauman Moscow State Technical University. We have also considered a number of education problems in domain of high statistical technologies
ßíäåêñ.Ìåòðèêà