Scientific Journal of KubSAU

Polythematic online scientific journal
of Kuban State Agrarian University
ISSN 1990-4665
AGRIS logo UlrichsWeb logo DOAJ logo
Search by author's name Search by title
Sort by: Date Title Views
225 kb

KEY STAGES OF STATISTICAL METHODS DEVELOPMENT

abstract 0971403086 issue 97 pp. 1205 – 1229 31.03.2014 ru 1341
The first statistical publication – the Fourth Book of Moses, “Numbers” in the Old Testament. We trace the development of ideas about the statistics until the twentieth century. The present stage of statistical methods began with parametric statistics by Pearson, Student, Fisher. Scientometrics of statistical researches provides an indication of the accumulated results. Nonparametric statistics appeared in the 1930s, applied statistics in our country - at the turn of 1970-80. We have discussed what gives applied statistics to national economy. Also we have told briefly about the history of statistical methods in Russia (until Kolmogorov's time)
200 kb

LIMIT THEOREMS FOR KERNEL DENSITY ESTIMATORS IN SPACES OF ARBITRARY NATURE

abstract 1081504021 issue 108 pp. 316 – 333 30.04.2015 ru 1089
Some estimators of the probability density function in spaces of arbitrary nature are used for various tasks in statistics of non-numerical data. Systematic exposition of the theory of such estimators had a start in our work [2]. This article is a direct continuation of the article [2]. We will regularly use references to conditions and theorems of the article [2], in which we introduced several types of nonparametric estimators of the probability density. We studied more linear estimators. In this article we consider particular cases - kernel density estimates in spaces of arbitrary nature. When estimating the density of the one-dimensional random variable, kernel estimators become the Parzen-Rosenblatt estimators. Asymptotic behavior of kernel density estimators in the general case of an arbitrary nature spaces are devoted to Theorem 1 - 8. Under different conditions we prove the consistency and asymptotic normality of kernel density estimators. We have studied uniform convergence. We have introduced the concept of "preferred rate differences" and studied nuclear density estimators based on it. We have also introduced and studied natural affinity measures which are used in the analysis of the asymptotic behavior of kernel density estimators. We have found the asymptotic behavior of dispersions of kernel density estimators and considered the examples including kernel density estimators in finite-dimensional spaces and in the space of square-integrable functions
241 kb

LIMIT THEOREMS IN STATISTICAL CONTROL

abstract 1161602032 issue 116 pp. 457 – 478 29.02.2016 ru 918
The article analyzes the development of the theory of statistical control (from the XVIII century to the present). Prof. M.V. Ostrogradskii (1846) clearly describes the practical needs (ie, arising from the quality assurance of large quantities of bags of flour or pieces of cloth), to meet whom he spent his research. At the same time Simpson was among the ideas of probability theory XVIII century. Therefore prof. M.V. Ostrogradskii may be regarded as the founder of the theory of statistical process control (not only in our country but all over the world). Limit theorems of probability theory and mathematical statistics have provided a number of asymptotic results in problems of statistical quality control, offer based on these best practices. However, we must find out how much interest among specialists characteristics are different from limit for finite sample sizes. Such research for the synthesis algorithm control plan on the basis of the limit average output level of defects is made in this article, and for the synthesis algorithm control plan on the basis of the acceptance and the rejection levels of defects - not yet (clarification of the conditions of applicability of this algorithm - unsolved problem of applied mathematics). We have briefly reviewed the development of our researches on the statistical control. Control units can be not only some units of production, but also documents (with internal and external audit), and standard units of air, water and soil in the environmental monitoring. One of the achievements can be regarded as the transfer of statistical control of production for environmental monitoring
201 kb

LIMIT THEORY OF NONPARAMETRIC STATISTICS

abstract 1001406011 issue 100 pp. 224 – 242 30.06.2014 ru 1148
We have studied the asymptotic behavior of a broad class of nonparametric statistics, which includes statistics of omega-square type and Kolmogorov-Smirnov type. Limit theorems have been proved. We have also developed the method of approximation with step functions. With the help of this method we have obtained a number of necessary and sufficient conditions
380 kb

LOGARITHMIC LAW AND EMERGENCE PARAMETER OF CLASSICAL AND QUANTUM SYSTEMS

abstract 1201606110 issue 120 pp. 1659 – 1685 30.06.2016 ru 426
The work discusses various examples of physical systems which state is determined by the logarithmic law - quantum and classical statistical systems and relativistic motion in multidimensional spaces. It was established that the Fermi-Dirac statistics and BoseEinstein-Maxwell-Boltzmann distribution could be described by a single equation, which follows from Einstein's equations for systems with central symmetry. We have built the rate of emergence of classical and quantum systems. The interrelation between statistical and dynamic parameters in supergravity theory in spaces of arbitrary dimension was established. It is shown that the description of the motion of a large number of particles can be reduced to the problem of motion on a hypersphere. Radial motion in this model is reduced to the known distributions of quantum and classical statistics. The model of angular movement is reduced to a system of nonlinear equations describing the interaction of a test particle with sources logarithmic type. The HamiltonJacobi equation was integrated under the most general assumptions in the case of centrally-symmetric metric. The dependence of actions on the system parameters and metrics was found out. It is shown that in the case of fermions the action reaches extremum in fourdimensional space. In the case of bosons there is a local extremum of action in spaces of any dimension
432 kb

LOGARITHMIC LAW FOR DYNAMICAL SYSTEMS FROM QUARKS TO GALAXIES

abstract 1201606099 issue 120 pp. 1470 – 1494 30.06.2016 ru 515
The article discusses various examples of dynamical systems in which the motion is determined by the logarithmic law - quark systems, hydrodynamic systems, galaxies. Set the general nature of angular motion on a hypersphere in a space of arbitrary dimension and radial movement 6D in the metric of a logarithmic potential. We investigate the 6D metric describing the case of motion with two centers of symmetry. It is shown that in such a metric exists a class of exact solutions, logarithmically dependent on the gravity center coordinates. It was established that in spiral galaxies the orbital motion is due to the logarithmic potential, which is the exact solution of the field equations of Einstein's theory of gravity. The most well-known and widespread in nature case is turbulent flow over a smooth or rough surface, in which the mean velocity depends logarithmically on the distance from the wall. We derivate the logarithmic velocity profile in turbulent flow from the NavierStokes equations. An analogy of the logarithmic velocity profile and the logarithmic law in the case of erosion of materials under impacts been proposed. In electrodynamics, Ampere's law, which describes the interaction of current-carrying conductors, is a consequence of the logarithmic dependence of the vector potential of the distance from the conductor axis. There is, however, an alternative derivation of Ampere law of the Riemann hypothesis about the currents due to the motion of charges
162 kb

LORENTZ QUANTUM ELECTRODYNAMICS

abstract 0751201083 issue 75 pp. 1077 – 1092 27.01.2012 ru 1674
The question of extending the Lorentz electrodynamics to quantum theory is discussed. The system of equations of the Lorentz quantum electrodynamics was established
215 kb

MAGNETIC PARTICLES` FORMATION IN CONDITIONS OF THE LOW-TEMPERATURE PLASMA AND MAGNETIC FIELD

abstract 1271703055 issue 127 pp. 791 – 802 31.03.2017 ru 584
Chemical processes are often connected with use or formation of condensed dispersed phase (CDP). Dispersed particles can change mobility of charges, as well as other parameters of the low-temperature plasma. The aim of this work is to study the effect of magnetic field on the processes of dispersed particles formation in argon-oxygen plasma containing iron and carbon atoms at atmospheric pressure. The equilibrium composition of iron and carbon atoms containing mixture simulated at temperatures of 1000-5000K for optimization of the plasma-forming gas composition. It is shown that in case of oxygen excess, the CDP particles contain only iron oxides. The literature data about the phase transition processes in a low-temperature plasma, as well as the data about the processes with participation of ferromagnetic particles in a constant magnetic field analyzed. The results of investigations of the dispersed particles forming in argon-oxygen plasma of arc discharge in the presence and in the absence of the magnetic field are shown. The formed disperse phase was deposited on the substrates and studied by the electron microscopy and X-ray methods. It was found that with the lack of oxygen the size of the iron-oxide particles created in the arc discharge containing iron and carbon is affected by magnetic field: in a magnetic field of 10 mT the particles are larger than in its absence
234 kb

MAIN FEATURES OF THE NEW PARADIGM OF MATHEMATICAL STATISTICS

abstract 0901306013 issue 90 pp. 188 – 214 30.06.2013 ru 1467
The new paradigm of mathematical statistics is based on the transition from parametric to nonparametric statistical methods, the numerical data - to non-numeric, on the intensive use of information technology. Its distinctive features are revealed in comparison with the old paradigm of mathematical statistics in the mid-twentieth century
360 kb

MANAGEMENT OF THE FINANCIAL AND THE ECONOMIC STATE OF A COMPANY USING A MATHEMATICAL MODEL

abstract 1231609017 issue 123 pp. 271 – 282 30.11.2016 ru 799
This article focuses on the mathematical modeling of evaluation of financial and economic activities of a company and on definition (based on this model) of such balance settings (line F1 and F2) which would make financial-economic indicators of the activities of the organization optimal, and the total cumulative score was the maximum. The knowledge and the use of the optimal parameters of the balance will allow the managers to plan strategy for the future development of the company. The article analyzes the dependencies of each of the 15 basic indicators (profitability, turnover, financial stability, liquidity and solvency) of financial and economic activity of the organization on the balance parameters. The optimal values of the parameters of the balance and the main indicators of financial and economic activities of the organization have been found. We have also built a mathematical model of optimal control of financial and economic indicators in the form of a problem of mathematical programming. For example, for the company called "Nika" it is shown the possibility of improving estimation of financial and economic condition of the organization. Knowledge of the optimal parameters of the balance will allow the managers to plan strategy for the future development of the organization. To solve this problem we have used the method of generalized reduced gradient implemented in Excel, with which there was found a maximum of the objective function for the article restrictions. The article describes the analysis algorithm of the optimization problem. A common assessment was carried out in stages, based on the calculation algorithm of sequentially improved target functions
.