Scientific Journal of KubSAU

Polythematic online scientific journal
of Kuban State Agrarian University
ISSN 1990-4665
AGRIS logo UlrichsWeb logo DOAJ logo
Search by author's name Search by title
573 kb

MATTER GENERATION FROM SINGULARITIES COLLIDING IN THE RICCI FLOWS

abstract 1221608069 issue 122 pp. 982 – 1006 31.10.2016 ru 501
In this article, we investigate the problem of creation of matter in the collision of particles, presented by singularities of the gravitational field. A system of nonlinear parabolic equations describing the evolution of the axially symmetric metrics in the Ricci flow derived. A model describing the creation of matter in the collision and merger of the particles in the Ricci flow proposed. It is shown that the theory that describes the Ricci flow in the collision of black holes is consistent with EinsteinInfeld theory, which describes the dynamics of the material particles provided by the singularities of the gravitational field. As an example, we consider the metric having axial symmetry and which contains two singularities simulating particles of finite mass. It is shown that the static metric with two singularities corresponding to in Newton's theory of gravity two particles moving around the center of mass in circular orbits in a non-inertial frame of reference, rotating with a period of two-body system rotation. We have numerically investigated the change of the metric in the collision of particles with subsequent expansion. In numerical experiments, we have determined that the collision of the particles in the Ricci flow leads to the formation of two types of matter with positive and negative energy density, respectively. When moving singularities towards each other in the area between the particles the matter is formed with negative energy density, and in the region behind the particles - with positive density. In the recession of the singularities, the matter with positive energy density is formed in the area between the particles. The question of the nature of baryonic matter in the expanding universe is discussed
0 kb

MAXWELL’S EQUTIONS AND YANG-MILLS THEORY IN THE METRIC OF ACCELERATING AND ROTATING REFERENCE SYSTEMS IN GENERAL RELATIVITY

abstract 1081504098 issue 108 pp. 1352 – 1375 30.04.2015 ru 0
Metric describing the accelerated and rotating reference system in general relativity in the case of an arbitrary dependence of acceleration and angular velocity on time has been proposed. It is established that the curvature tensor in such metrics is zero, which corresponds to movement in the flat spaces. It is shown that the motion of test bodies in the metric accelerated and rotating reference system in general relativity is similarly to the classical motion in non-inertial reference frame. Maxwell's equations and Yang-Mills theory are converted to the moving axes in metric describes the acceleration and rotating reference frame in the general relativity in the case of an arbitrary dependence of acceleration and angular velocity of the system from time. The article discusses the known effects associated with acceleration and (or) the rotation of the reference frame - the Sagnac effect, the effect of the Stewart-Tolman and other similar effects. The numerical model of wave propagation in non-inertial reference frames in the case when potential depending of one, two and three spatial dimensions has been developed. It has been shown in numerical experiment that the acceleration of the reference system leads to retardation effects, as well as to a violation of the symmetry of the wave front, indicating that there is local change of wave speed
227 kb

MECHANISM OF FORMATION AND PROPAGATION OF WAVES IN THE ELECTROMAGNETIC ENVIRONMENT

abstract 1001406061 issue 100 pp. 931 – 948 30.06.2014 ru 1776
We discuss the question of the essence of formation and propagation of waves in the electromagnetic environment. We have questioned the reliability of its description by J. Maxwell in the form of alternating electric and magnetic fields. The article justifies the formation of an electromagnetic wave in the form of a wave compression-decompression surrounding electromagnetic photon field flux of photons of different frequencies emitted by different sources or antenna
2430 kb

METHOD OF COGNITIVE CLUSTERIZATION OR CLUSTERIZATION ON THE BASIS OF KNOWLEDGE (Clusterization in system-cognitive analysis and intellectual system "Eidos")

abstract 0711107040 issue 71 pp. 532 – 579 30.09.2011 ru 1992
In this article, on a small and evident numerical example, methodological aspects of a process engineering of detection of knowledge from the trial-and-error data explicitly are considered, representation of knowledge and its usage for problem solving of forecasting, decision making and data domain examination in system-cognitive analysis (SC-analysis) and its programmatic toolkit - intellectual "Eidos" system are shown
95 kb

METHOD OF REPLICATIONS AMOUNT CHOICE UNDER CARRYING OUT OF EXPERIMENTAL RESEARCHES

abstract 0380804004 issue 38 pp. 66 – 71 29.04.2008 ru 10630
Method of replications amount determination under comparison of two samplings dependently on average values of samplings and their standard deviations is presented in this article. Example of samplings comparison by the criteria of Student has been shown.
284 kb

METHODOLOGY OF CONTROL PROCESSES MODELING IN SOCIO-ECONOMIC SYSTEMS

abstract 1011407011 issue 101 pp. 166 – 196 30.09.2014 ru 1594
The article introduces the basic concepts of control theory. It has also noted the multicriteriality of real control problems. After reviewing the basic concepts of the theory of modeling we have analyzed postwar history and current status of mathematical modeling of control processes. We have also discussed the modeling methodology. As an example of a real model of the management process we have considered a model of allocation of time between the acquisition of knowledge and development of skills
190 kb

METHODS OF REDUCING SPACE DIMENSION OF STATISTICAL DATA

abstract 1191605005 issue 119 pp. 92 – 107 31.05.2016 ru 608
One of the "points of growth" of applied statistics is methods of reducing the dimension of statistical data. They are increasingly used in the analysis of data in specific applied research, such as sociology. We investigate the most promising methods to reduce the dimensionality. The principal components are one of the most commonly used methods to reduce the dimensionality. For visual analysis of data are often used the projections of original vectors on the plane of the first two principal components. Usually the data structure is clearly visible, highlighted compact clusters of objects and separately allocated vectors. The principal components are one method of factor analysis. The new idea of factor analysis in comparison with the method of principal components is that, based on loads, the factors breaks up into groups. In one group of factors, new factor is combined with a similar impact on the elements of the new basis. Then each group is recommended to leave one representative. Sometimes, instead of the choice of representative by calculation, a new factor that is central to the group in question. Reduced dimension occurs during the transition to the system factors, which are representatives of groups. Other factors are discarded. On the use of distance (proximity measures, indicators of differences) between features and extensive class are based methods of multidimensional scaling. The basic idea of this class of methods is to present each object as point of the geometric space (usually of dimension 1, 2, or 3) whose coordinates are the values of the hidden (latent) factors which combine to adequately describe the object. As an example of the application of probabilistic and statistical modeling and the results of statistics of non-numeric data, we justify the consistency of estimators of the dimension of the data in multidimensional scaling, which are proposed previously by Kruskal from heuristic considerations. We have considered a number of consistent estimations of dimension of models (in regression analysis and in theory of classification). We also give some information about the algorithms for reduce the dimensionality in the automated system-cognitive analysis
397 kb

METRIC OF ACCELERATING AND ROTATING REFERENCE SYSTEMS IN GENERAL RELATIVITY

abstract 1071503112 issue 107 pp. 1722 – 1744 31.03.2015 ru 929
Metric describing the accelerated and rotating reference system in general relativity in the case of an arbitrary dependence of acceleration and angular velocity on time has been proposed. It is established that the curvature tensor in such metrics is zero, which corresponds to movement in the flat spaces. It is shown that the motion of test bodies in the metric accelerated and rotating reference system in general relativity is similarly to the classical motion in non-inertial reference frame. Consequently, there exist a metric in general relativity, in which the Coriolis theorem and classic velocity-addition formula are true. This means that classical mechanics is accurate rather than approximate model in general relativity. A theory of potential in non-inertial reference systems in general relativity is considered. The numerical model of wave propagation in non-inertial reference frames in the case when potential depending of one, two and three spatial dimensions has been developed. It is shown in numerical experiment that the acceleration of the reference system leads to retardation effects, as well as to a violation of the symmetry of the wave front, indicating that there is local change of wave speed
544 kb

METRIC OF VIRTUAL WORLDS

abstract 0931309109 issue 93 pp. 1566 – 1586 30.11.2013 ru 1666
We investigate the hypothesis of a plurality of parallel and virtual worlds. It is assumed that sentient beings in each virtual world reach a stage of development that can create a virtual world to simulate the history of their own development. In this case, the virtual worlds are nested within each other, which put a severe restriction on the possible geometry of space-time. Discussed the draft geometry virtual worlds consistently displayed from one world to another. It is shown that in this case, the metric should be universal, depending only on the fundamental constants. There are examples of universal metrics obtained in Einstein's theory of gravitation and Yang-Mills theory
612 kb

METRIZATION OF MEASURING SCALES OF DIFFERENT TYPES AND JOINT COMPARABLE QUANTITATIVE PROCESSING OF HETEROGENEOUS FACTORS IN SYSTEM-COGNITIVE ANALYSIS AND THE EIDOS SYSTEM

abstract 0921308058 issue 92 pp. 860 – 884 31.10.2013 ru 1748
The article considers measuring scales as a tool for creating formal models of real objects and a tool for increasing the degree of formalization of these models to a level sufficient to implement them on computers. It also describes the different types of measuring scales, allowing to create models of varying degrees of formalization; lists the types of transformation valid during the processing of empirical data obtained with scales of different types; develops the task of metriza-tion of the scales, i.e. conversion to the most formalized mind; it proposes 7 ways of metrization of all the types of scales, providing a joint comparable quantitative processing of heterogeneous factors measured in different units of measure due to the conversion of all scales to one universal unit of measurement in which the measurement number of information is selected. All of these methods of metrization have been implemented in the system-cognitive analysis and in the Eidos intellectual system
ßíäåêñ.Ìåòðèêà