Scientific Journal of KubSAU

Polythematic online scientific journal
of Kuban State Agrarian University
ISSN 1990-4665
AGRIS logo UlrichsWeb logo DOAJ logo
Search by author's name Search by title
Sort by: Date Title Views
252 kb

ABOUT THE NEW PARADIGM OF MATHEMATICAL METHODS OF RESEARCH

abstract 1221608056 issue 122 pp. 806 – 831 31.10.2016 ru 585
In 2011 – 2015, the scientific community was represented by a new paradigm of mathematical methods of research in the field of organizational and economic modeling, econometrics and statistics. There was a talk about a new paradigm of applied statistics, mathematical statistics, mathematical methods of economics, the analysis of statistical and expert data in problems of economics and management. We consider it necessary to develop organizational and economic support for solving specific application area, such as the space industry, start with a new paradigm of mathematical methods. The same requirements apply to the teaching of the respective disciplines. In the development of curricula and working programs, we must be based on a new paradigm of mathematical methods of research. In this study, we present the basic information about a new paradigm of mathematical methods of research. We start with a brief formulation of a new paradigm. The presentation in this article focuses primarily on the scientific field of "Mathematical and instrumental methods of economy", including organizational and economic and economic-mathematical modeling, econometrics and statistics, and decision theory, systems analysis, cybernetics, operations research. We discuss the basic concepts. We talk about the development of a new paradigm. We carry out a detailed comparison of the old and the new paradigms of mathematical methods of research. We give information about the educational literature, prepared in accordance with the new paradigm of mathematical methods of researches
225 kb

NONPARAMETRIC KERNEL ESTIMATORS OF PROBABILITY DENSITY IN THE DISCRETE SPACES

abstract 1221608057 issue 122 pp. 832 – 854 31.10.2016 ru 999
Some estimators of the probability density function in spaces of arbitrary nature are used for various tasks in statistics of non-numerical data. Systematic exposition of the theory of such estimators has been started in our articles [3, 4]. This article is a direct continuation of these works [3, 4]. We will regularly use references to conditions and theorems of the articles [3, 4], in which introduced several types of nonparametric estimators of the probability density. We have studied linear estimators. In this article, we consider particular cases - kernel density estimates in discrete spaces. When estimating the density of the one-dimensional random variable, kernel estimators become the Parzen-Rosenblatt estimators. Under different conditions, we prove the consistency and asymptotic normality of kernel density estimators. We have introduced the concept of "preferred rate differences" and are studied nuclear density estimators based on it. We have introduced and studied natural affinity measures which are used in the analysis of the asymptotic behavior of kernel density estimators. Kernel density estimates are considered for sequences of spaces with measures. We give the conditions under which the difference between the densities of probability distributions and of the mathematical expectations of their nuclear estimates uniformly tends to 0. Is established the uniform convergence of the variances. We find the conditions on the kernel functions, in which take place these theorems about uniform convergence. As examples, there are considered the spaces of fuzzy subsets of finite sets and the spaces of all subsets of finite sets. We give the condition to support the use of kernel density estimation in finite spaces. We discuss the counterexample of space of rankings in which the application of kernel density estimators can not be correct
573 kb

MATTER GENERATION FROM SINGULARITIES COLLIDING IN THE RICCI FLOWS

abstract 1221608069 issue 122 pp. 982 – 1006 31.10.2016 ru 498
In this article, we investigate the problem of creation of matter in the collision of particles, presented by singularities of the gravitational field. A system of nonlinear parabolic equations describing the evolution of the axially symmetric metrics in the Ricci flow derived. A model describing the creation of matter in the collision and merger of the particles in the Ricci flow proposed. It is shown that the theory that describes the Ricci flow in the collision of black holes is consistent with EinsteinInfeld theory, which describes the dynamics of the material particles provided by the singularities of the gravitational field. As an example, we consider the metric having axial symmetry and which contains two singularities simulating particles of finite mass. It is shown that the static metric with two singularities corresponding to in Newton's theory of gravity two particles moving around the center of mass in circular orbits in a non-inertial frame of reference, rotating with a period of two-body system rotation. We have numerically investigated the change of the metric in the collision of particles with subsequent expansion. In numerical experiments, we have determined that the collision of the particles in the Ricci flow leads to the formation of two types of matter with positive and negative energy density, respectively. When moving singularities towards each other in the area between the particles the matter is formed with negative energy density, and in the region behind the particles - with positive density. In the recession of the singularities, the matter with positive energy density is formed in the area between the particles. The question of the nature of baryonic matter in the expanding universe is discussed
540 kb

RESTRICTED MANY-BODY PROBLEM IN THE RICCI FLOWS IN GENERAL RELATIVITY

abstract 1221608070 issue 122 pp. 1007 – 1032 31.10.2016 ru 452
In this article, the restricted problem of three and more bodies in the Ricci flow in the general theory of relativity considered. A system of non-linear parabolic equations describing the evolution of the axially symmetric metrics in the Ricci flow proposed. A model describing the motion of particles in the Ricci flow derived. It is shown that the theory describing the Ricci flow in the many-body problem is consistent with the Einstein-Infeld theory, which describes the dynamics of the material particles provided by the singularities of the gravitational field. As an example, consider the metric having axial symmetry and contains two singularities simulating particles of finite mass. It is shown that the static metric with two singularities corresponds to Newton's theory of the two centers of gravity, moving around the center of mass in circular orbits in a noninertial frame of reference, rotating with a period of bodies. We consider the statement of the problem of many bodies distributed at the initial time on the axis of symmetry of the system. In numerical calculations, we studied the properties of the gravitational potential in the problem of establishing a static condition in which multiple singularities retain the initial position on the axis of the system. This is achieved due to relativistic effects, which have no analogues in Newton's theory of gravitation. Using the properties of relativistic potentials we have justified transition from the relativistic motion of the particles to the dynamic equations in the classic theory
555 kb

COLOR MATTER GENERATION IN THE RICCI FLOW IN GENERAL RELATIVITY

abstract 1221608082 issue 122 pp. 1232 – 1256 31.10.2016 ru 493
In this article, we investigate the restricted problem of many bodies with a logarithmic potential in the general theory of relativity. We consider the metric having axial symmetry and containing a logarithmic singularity. In numerical calculations, we studied the properties of the gravitational potential in the problem of establishing a static condition in which multiple singularities retain the initial position on the axis of the system. This is achieved due to relativistic effects, which have no analogues in Newton's theory of gravitation. The motion of relativistic particles in a logarithmic potential sources distributed on the surface of a torus simulated. It is shown that the trajectory of the particles in these systems form a torus covered with needles. It was found, that the Ricci flow in the general theory of relativity could be born three kinds of matter - positive and negative energy density, as well as the color of matter, the gravitational potential of which is complex. It has been shown that this type of material is associated with the manifestation of the quantummechanical properties, which is consistent with the hypothesis of the origin of Schrodinger quantum mechanics. It is assumed that the most likely candidate for the role of the color of matter is the system of quarks as to describe the dynamics of quarks using the logarithmic potential, and the quarks themselves are not observed in the free state
1274 kb

QUANTIFICATION OF THE DEGREE OF MANIPULATION OF THE H-INDEX AND ITS MODIFICATION RESISTANT TO MANIPULATION

abstract 1211607005 issue 121 pp. 202 – 234 30.09.2016 ru 1006
In the USSR higher attestation Commission from 1975 to the collapse of the USSR was subordinated not to the Ministry of education and science, but to the Council of Ministers of the USSR directly. However, since then there is a steady trend of gradual reduction of the status of the Commission. Today it is not just included in the Ministry of education, it is just one of the units of one of its structures: the Rosobrnadzor. Reduced status of the HAC inevitably leads to a decline in the status and in the adequacy of scientific degrees assigned as well as scientific ranks. This process of devaluation of traditional academic degrees and titles assigned to the HAC, has reached the point when a few years ago there were abolished salary increments for them. Now, instead of that, every university and research institutes have developed their local, i.e. non-comparable with each other scientometric methods of evaluation of the results of scientific and teaching activities. Despite the diversity of these techniques, there is a common thing among all of them, which is the disproportionate role of the h-index. The value of the Hirsch index starts to play an important role in the protection, when considering competitive cases for positions, as well as in determining the monthly rewards for the results of scientific and teaching activities. By itself, this index is well founded, theoretically. However, in connection with the practice of its application in our conditions, in the collective consciousness of the scientific community there was a kind of mania, which the authors call the "Hirschmania". This mania is characterized by elevated unhealthy interest to the value of the Hirsch index, as well as incorrect manipulation of its value, i.e. inadequate artificial exaggeration of this value, as well as a number of negative consequences of that interest. In this study we have made an attempt to construct a quantitative measure for assessing the extent of improper manipulation of the value of the Hirsch index, and offered a science-based modification of the h-index, insensitive (resistant) to the manipulation. The article presents a technique for all the numerical calculations, which is simple enough for any author to use
253 kb

RUSSIAN SCIENTIFIC SCHOOL IN THE ECONOMETRICS FIELD

abstract 1211607006 issue 121 pp. 235 – 261 30.09.2016 ru 619
We have considered the formation of the Russian scientific school in the field of econometrics, obtained its obtained scientific results, the possibilities of their use in solving problems of the economy, the organization of production and controlling of industrial companies and organizations, as well as in teaching. As econometrics we consider a scientific and an academic discipline devoted to the development and application of statistical methods to study economic phenomena and processes, in short, statistical methods in economics. Therefore, we can say that a lot of domestic books and articles, in particular, the works by the author of this publication from the beginning of the 70s, are the parts of econometrics. However, in this article we consider only the works, in the titles of which we can see the word of "econometrics". In our country the term "econometrics" has become popular since the mid 90s. However, many publications and training courses are still developed in the western outdated paradigm. They do not conform to the new paradigm of mathematical methods of economics, the new paradigm of applied statistics and mathematical statistics, mathematical methods of research. Russian science school in the field of econometrics operates within the scientific school in the field of probability theory and mathematical statistics based by A.N. Kolmogorov. Russian science school is developed in accordance with the new paradigm of mathematical methods. It is necessary to examine the main results of Russian scientific schools in the field of econometrics. We present the information on the institutional design of national scientific schools in econometrics, in particular, on the activities of the Institute of High Technologies statistics and econometrics
651 kb

CLARIFICATION OF A MODEL OF A BALANCING ROBOT BY LOGICAL AND EMPIRICAL METHODS

abstract 1211607011 issue 121 pp. 336 – 356 30.09.2016 ru 661
This work studies the mathematical model of the object “inverted pendulum” on the example of the unstable electromechanical devices which is balancing robot on wheel couple. Unfortunately, many details of object model are unknown. Logical and empirical method offers hypotheses about the difference between the actual object model from its mathematical approximation based on logical analysis with subsequent refinement of this model and testing of the hypothesis with modeling of the systems with the updated model. As a result, the amendments to the model have been found containing nonlinear components. With the help of these amendments, the dynamic characteristics of the actuator, filters, friction and the tendency of the object to fluctuations are better taken into account
216 kb

TO THE RESEARCH METHODS OF FAULTS UNDER THE VIBRATION IMPACTS

abstract 1211607033 issue 121 pp. 647 – 659 30.09.2016 ru 439
We propose an approach to the modeling of stressstrain state of lithospheric structures near faults by modeling them as Kirchhoff plates on threedimensional elastic foundation. We describe an efficient method of solving problems for plates with rectilinear fractures, based on the transformation of the differential operator, which allows us to analyze the solutions obtained for different contact conditions in the area of the fracture. The method is presented on the example of the vibration problem of two elongated plates on the surface of the elastic layer under the effect of concentrated surface load. The results of numerical implementation of the developed algorithm make it possible to identify the influence of the substrate properties, characteristics of the plates and the nature of their border interactions on the picture of wave process in the test structure. At the same time obtained configurations of the harmonic signal passage through the fracture can serve as an indicator of its type. The proposed approach should be used to determine the presence and type of fractures based on measurements of signals from vibration sources in cases when geophysical environment can be modeled by the previously described structure. The problems of studying objects we reviewed in this paper also occur in various areas of technology, and, therefore we can apply the proposed method for their solution
174 kb

SIMULATION MODELING OF DISTRIBUTION OF EPIDEMICS ON THE BASIS OF AGENT APPROACH

abstract 1211607085 issue 121 pp. 1369 – 1379 30.09.2016 ru 775
Today, infectious diseases remain a leading cause of premature deaths in the world. Agent-based modeling can play an important role in predicting the spread of disease and to assess the containment measures. The aim is to construct a multi-agent simulation model for the formation of epidemic measures to reduce effectively their incidence. Using the multi-agent simulation approach to modeling of epidemics due to the fact that the approach allows us to consider a number of factors influencing the epidemic process, makes it possible to carry out numerical experiments. The processes of the spatial distribution and temporal variation of these two groups of epidemics of infectious the author calls dynamics. Usually hard-implemented spatial components of the dynamics in the proposed model can be substituted by predfractal topology of the graph, which is built up by voluminous graphs - primers, and the dynamics of compounding prefractal graph, called its recognition, is responsible for the timing of the process component. Under the term of agent, we consider an elementary study participant. An agent is active; it is in a state that may change under the influence of factors. The properties of the agent are attributed characteristics that form the level of immunity: height, weight, gender, income, marital status, education, geography
.