Scientific Journal of KubSAU

Polythematic online scientific journal
of Kuban State Agrarian University
ISSN 1990-4665
AGRIS logo UlrichsWeb logo DOAJ logo
Search by author's name Search by title
216 kb

CENTERS PLACEMENT ON MANY-WEIGHTED PREFRACTAL GRAPHS

abstract 1211607108 issue 121 pp. 1749 – 1761 30.09.2016 ru 981
Multicriterial formulation for centers placement problem on many-weighted prefractal graph is proposed. Estimation of the radial criterion of prefractal graph generated by seed-star is shown. Polynomial algorithm centers placement on prefractal graph with preserving contiguity old edges is suggested. Estimation of computational complexity of the algorithm and the example of the work algorithm are considered
778 kb

PARTICLE COLLISIONS IN THE RICCI FLOW

abstract 1211607111 issue 121 pp. 1787 – 1808 30.09.2016 ru 520
In this work, we investigate the problem of collisions of particles linked to the singularities of the gravitational field in the Ricci flow. A system of non-linear parabolic equations describing the evolution of the axially symmetric metrics proposed. We consider the metric having axial symmetry and comprising two singularities simulating particles of finite mass. There was numerically investigated the change of the metric in the collision of particles. Two formulations of the problem have been considered, one of which scatter particles after the collision, and the other as a result of the merger of two particles, a new stable static system, which can be interpreted as a new particle. The initial and boundary conditions using the exact solution of the static problem, so the collision persist particularly metrics caused by the presence of particles. In numerical experiments determined that the collision of the particles in the Ricci flow leads to the formation of gravitational waves, similar in structure to the waves, registered in the LIGO experiment. Consequently, we can assume that the observed gravity waves caused mainly by transients associated with the change in the metric system. A model describing the emission of gravitational waves in the collision of particles in the Ricci flow proposed. The influence of the parameters of the problem - the speed and mass of the particles, on the amplitude and intensity of the emission of gravitational waves was numerically simulated
567 kb

GRAVITATIONAL WAVES IN THE RICCI FLOW FROM SINGULARITIES MERGER

abstract 1211607121 issue 121 pp. 1907 – 1928 30.09.2016 ru 599
In this study, we investigate the problem of the emission of gravitational waves produced in collisions of particles submitted to the singularities of the gravitational field. A system of non-linear parabolic equations describing the evolution of the axially symmetric metrics in the Ricci flow derived. A model describing the emission of gravitational waves in the collision and merger of the particles in the Ricci flow proposed. It is shown that the theory of the Ricci flow describes the problem of black holes merge, consistent with Einstein-Infeld theory, which describes the dynamics of the material particles provided by the singularities of the gravitational field. As an example, we consider the metric having axial symmetry and comprising two singularities simulating particles of finite mass. We have numerically investigated the change of the metric in the collision and merger of the particles. The initial and boundary conditions using the exact solution of the static problem, so the collision persist particularly metrics caused by the presence of particles. In numerical experiments determined that the collision of the particles in the Ricci flow leads to the formation of gravitational waves, similar in structure to the waves, registered in the LIGO experiment. Consequently, we can assume that the observed gravity waves caused mainly by transients associated with the change in the metric of a system. The influence of the parameters of the problem - the speed and mass of the particles, on the amplitude and intensity of the emission of gravitational waves was numerically simulated. We have found chaotic behavior of gravitational potentials at the merger of the singularities in the Ricci flow
189 kb

THE INFLUENCE OF REACTION OF DISSOCIATION / RECOMBINATION OF WATER MOLECULES ON ELECTROLYTE TRANSPORTATION 1: 1 IN MEMBRANE SYSTEMS IN THE DIFFUSION LAYER. PART 1. MATHEMATICAL MODEL

abstract 1211607122 issue 121 pp. 1929 – 1941 30.09.2016 ru 467
The influence of dissociation / recombination of water molecules is important for understanding electroconvection processes, as some authors believe that the emergence of new carriers + H and − OH , and can lead to a reduction in the space-charge and, consequently, to electroconvection disappearance. However, as shown in [5], the dissociation of water molecules, although it reduces the space charge and increases the threshold fall potential jump at which begins electroconvection, yet it persists and effectively mixes the solution. This article is devoted to mathematical modeling of electrodiffusion of four types of ions at the same time (two salt ions as well as + H and − OH ions) in the diffusion layer in electromembrane systems with perfectly selective membrane under the joint influence of violation of electrical neutrality, and the reaction of dissociation / recombination of water molecules, development of mathematical models of these processes, building efficient algorithms asymptotic and numerical analysis for different types of electrolytes. The work proposes a new mathematical model of the process of transfer of salt ions in view of the space charge and the dissociation / recombination of water in the form of a boundary value problem for a system of ordinary differential equations. This system is reduced to a form convenient for numerical solution. We have calculated the required additional boundary conditions for the electric field. Numerical and asymptotic solution of the boundary value problem and physico-chemical analysis of the influence of dissociation / recombination on the transfer of salt ions is expected to devote the next part of the work
337 kb

AUTOMATION OF SYSTEM PROBLEMS SOLVING BY STRUCTURED SYSTEMS SYSTEMOLOGY

abstract 1211607128 issue 121 pp. 2019 – 2030 30.09.2016 ru 831
The article reviews a method of systems structuring systemology for systems problem solving. The author’s modified algorithm of systems structuring of G.J. Klir’s is presented. It shows software module realizing the modified algorithm of systems structuring
503 kb

DYNAMICS OF THE GEOMAGNETIC FIELD AND REVERSALS IN THE SATELLITE MODEL

abstract 1211607132 issue 121 pp. 2069 – 2089 30.09.2016 ru 439
The article deals with the problem of changing the polarity of the geomagnetic field in the satellite model. It is assumed that the central core of the earth magnetized and surrounded by a number of satellites, each of which has a magnetic moment. Satellites interact with a central core and one another by means of gravity and through a magnetic field. It is shown that satellites distributed in orbit around a central core in such a system. It displays two models, one of which on the outer orbit satellites interact with each other and with a central body - the core and satellites, located on the inner orbit. The central body can make sudden upheavals in the fall at the core of one or more satellites, which leads to the excitation of vibrations in the satellite system, located on the outer orbit. It is shown that the duration of phase with constant polarity and upheaval time depends on the magnitude of the disturbance torque and core asymmetry. The second model contains two magnets subsystems and the central core. The rapid change of the geomagnetic field polarity detected on the basis of paleomagnetic data is modeled based on the Euler theory describing the rigid body rotation. In this model, there are modes with a quick flip of the body while maintaining the angular momentum. If the body has a magnetic moment, when there is a change coup magnetic field polarity. This leads to the excitation of vibrations in the satellite subsystems that are on the inner and outer orbits. Numerical simulation of the dynamics of the system consisting of the core and 10-13 satellites was run to determine the period of constant polarity magnetic field
137 kb

TO THE QUESTION OF MATHEMATICAL METHODS DEVELOPMENT OF CONTROLLING

abstract 1201606002 issue 120 pp. 49 – 59 30.06.2016 ru 370
On the basis of the objective analysis it must be noted that in the arsenal of managers, especially foreign ones, there is practically no fundamentally new methods and tools of controlling. So says the executive director of Russian Association of Controllers prof. S. G. Falco. However, promising mathematical and instrumental methods of controlling actively developed in our country. It is necessary to implement them. For example, managers should be used techniques which discussed in the book by Orlov AI, Lutsenko EV, Loikaw VI "Advanced mathematical and instrumental methods of controlling" (2015). These methods are based on the modern development of mathematics as a whole - on the system interval fuzzy math (see the same named book by Orlov AI and Lutsenko EV, 2014). Considered methods are developed in accordance with the new paradigm of mathematical methods of research. It includes new paradigms of applied statistics, mathematical statistics, mathematical methods of economics, methods of analysis of statistical and expert data in management and control. In the XXI century there were more than 10 books issued, developed in accordance with the new paradigm of mathematical methods of research. The systems approach to solving specific applications often requires going beyond the economy. Very important are the procedures for the introduction of innovative methods and tools. In this article we consider the above research results in their interconnection
223 kb

THE NEW CHRONOLOGY OF THE WORLD HISTORY AND THE RUSSIAN HISTORY AS THE BASIS OF STATE-PATRIOTIC OUTLOOK

abstract 1201606003 issue 120 pp. 60 – 85 30.06.2016 ru 328
The relationship of Mathematical Statistics (wider - Mathematical methods of research) and history is multifaceted. In our opinion, the history of mathematical statistics is an integral part of this mathematical discipline. We have given a review of our works on the history of statistical methods. The role of mathematical statistics for the history is very important. In this article, we restrict ourselves to the questions of chronology. For centuries, the chronology is considered as a part of applied mathematics. The main problem is that the whole "common" concept of the Russian and the World history as a whole presented in textbooks was faked by the opponents of Russia after the collapse of the global Empire (Russian kingdom) in the early 17th century - 400 years ago. The stories about historical events are the information weapon. It was used by the new rulers to suppress the resistance of the vanquished. A new mathematical and statistical chronology of general and Russian history, which was built by a scientific team led by Academician Fomenko, has been helpful for the discussion about the current economic and political problems of relations between Russia and the West in the XXI century. In our opinion, the new chronology of the World and Russian history should be one of the foundations of state-patriotic ideology and deriving practical solutions. The purpose of this article is to give the initial idea of the new chronology from this point of view
1092 kb

INTERVAL MODEL OF THE LARGE-SCALE CLUSTERING OF THE MATTER IN THE UNIVERSE

abstract 1201606028 issue 120 pp. 425 – 437 30.06.2016 ru 765
The article presents the model of the large-scale clustering of the matter in the universe. The base for mathematical calculations is interval mathematics
581 kb

PARTICLE DYNAMICS IN METRICS WITH LOGARITHMIC POTENTIAL

abstract 1201606070 issue 120 pp. 1067 – 1092 30.06.2016 ru 492
Particle dynamics in metrics with logarithmic potential The work considers the problem of modeling the motion of particles in a unified field theory to 6D, in theory, supergravity in the 112D and metric galaxies. We have investigated a centrally symmetric metric in the 112-dimensional Riemannian space, which depends on the radial coordinate, time, and 110 angles. We present a system of equations describing the angular movement on a hypersphere of any dimension N. It is shown that the motion on the hypersphere depends on the 2 (N-1) of singular points. We have installed general nature of relativistic motion on a hypersphere when it is displayed on the plane and in three-dimensional space. It is shown that the motion determined by the reflection from the singular points that of motion on the plane in some cases leads to thickening of the trajectories in the neighborhood of sides of the rectangle. The 6D investigated metric describing the case of motion with two centers of symmetry. It is shown that in such a metric exists a class of exact solutions, logarithmically dependent on the gravity centers of origin. It is found that in this system there is a motion with condensation paths around the sides of the rectangle, due to scattering of test particles gravity sources. We set the general nature of angular motion on a hypersphere and radial movements in 6D in the metric of a logarithmic potential. It is proved that similar solutions with logarithmic potential exist in galaxies metric in the metric of Einstein's theory of gravity. The article also describes the connection of the solutions to the nonlinear electrodynamics, and with a theory of quark interactions and Yang-Mills theory
ßíäåêñ.Ìåòðèêà