Scientific Journal of KubSAU

Polythematic online scientific journal
of Kuban State Agrarian University
ISSN 1990-4665
AGRIS logo UlrichsWeb logo DOAJ logo
Search by author's name Search by title
Sort by: Date Title Views
200 kb

LIMIT THEOREMS FOR KERNEL DENSITY ESTIMATORS IN SPACES OF ARBITRARY NATURE

abstract 1081504021 issue 108 pp. 316 – 333 30.04.2015 ru 1082
Some estimators of the probability density function in spaces of arbitrary nature are used for various tasks in statistics of non-numerical data. Systematic exposition of the theory of such estimators had a start in our work [2]. This article is a direct continuation of the article [2]. We will regularly use references to conditions and theorems of the article [2], in which we introduced several types of nonparametric estimators of the probability density. We studied more linear estimators. In this article we consider particular cases - kernel density estimates in spaces of arbitrary nature. When estimating the density of the one-dimensional random variable, kernel estimators become the Parzen-Rosenblatt estimators. Asymptotic behavior of kernel density estimators in the general case of an arbitrary nature spaces are devoted to Theorem 1 - 8. Under different conditions we prove the consistency and asymptotic normality of kernel density estimators. We have studied uniform convergence. We have introduced the concept of "preferred rate differences" and studied nuclear density estimators based on it. We have also introduced and studied natural affinity measures which are used in the analysis of the asymptotic behavior of kernel density estimators. We have found the asymptotic behavior of dispersions of kernel density estimators and considered the examples including kernel density estimators in finite-dimensional spaces and in the space of square-integrable functions
347 kb

ESTIMATION OF A COMPANY CREDIT STATUS BASED ON THE FIVE-FACTOR “ALTMAN” MODEL USING FUZZY SETS AND SIMULATION

abstract 1081504022 issue 108 pp. 334 – 356 30.04.2015 ru 1267
In this article we propose a method that uses the apparatus of the theory of fuzzy sets, together with the five-factor model of Altman in assessing the creditworthiness of an enterprise. Altman's model works in two ways: It applies the root mean square (RMS) integral approximation for the exact calculation of quantitative assessment of creditworthiness (probability of bankruptcy), and using the device of fuzzy sets for ordered sets by the degree of confidence in the resulting probability. In this paper we conducted simulation procedure for the credit assessment and showed the capabilities of the model. The model input parameters , forms system inputs (input variables), allowing you to get the value of the parameter z of Altman. With the help of Altman's model, approximating function L6, the decision function I(p) and the algorithm for calculating preference  we obtain the number of the set i to which belongs a number of ordered sets as fuzzy logic . On the selected simulation parameters, stable statistics can be obtained. Altman's model with the use of computational function allows real values of the input parameters of the enterprise replaced by random values of the simulation model. This technique allows, as shown by the results of computational experiments, the creditor to obtain additional information on the creditworthiness of the investigated enterprise and make a more informed conclusion about its financial condition, which speeds up the decision on the possibility of issuing the required credit. The development of method of estimating fuzzy logic can be applied to other models of assessing the creditworthiness of a company: Davydov's model, Zaitseva's, Saifullina's, Kadykova's and others with appropriate modification
0 kb

MAXWELL’S EQUTIONS AND YANG-MILLS THEORY IN THE METRIC OF ACCELERATING AND ROTATING REFERENCE SYSTEMS IN GENERAL RELATIVITY

abstract 1081504098 issue 108 pp. 1352 – 1375 30.04.2015 ru 0
Metric describing the accelerated and rotating reference system in general relativity in the case of an arbitrary dependence of acceleration and angular velocity on time has been proposed. It is established that the curvature tensor in such metrics is zero, which corresponds to movement in the flat spaces. It is shown that the motion of test bodies in the metric accelerated and rotating reference system in general relativity is similarly to the classical motion in non-inertial reference frame. Maxwell's equations and Yang-Mills theory are converted to the moving axes in metric describes the acceleration and rotating reference frame in the general relativity in the case of an arbitrary dependence of acceleration and angular velocity of the system from time. The article discusses the known effects associated with acceleration and (or) the rotation of the reference frame - the Sagnac effect, the effect of the Stewart-Tolman and other similar effects. The numerical model of wave propagation in non-inertial reference frames in the case when potential depending of one, two and three spatial dimensions has been developed. It has been shown in numerical experiment that the acceleration of the reference system leads to retardation effects, as well as to a violation of the symmetry of the wave front, indicating that there is local change of wave speed
0 kb

TO THE RELATIONSHIP OF COMBINATORIAL, PROBABILISTIC AND SYNERGETIC APPROACHES FOR DETERMINING THE QUANTITY OF INFORMATION

abstract 1081504099 issue 108 pp. 1376 – 1410 30.04.2015 ru 0
In the article we consider integrative codes of the elements of discrete systems for the first time. It is shown that these codes in the general case divided into group and system parts. The group part of the code characterizes a set of elements with identical value of the sign as a whole. System part of the code appears when different sets are combined into the system. We have established that in using the weighted average of these parts of integrative code we can express information measures of combinatorial, probabilistic and synergistic approaches to determine the quantity of information. It is concluded that there is an integrative coding relationship between these approaches, and the existing types of information have genetic relationship. It is shown that the information considered in the synergetic approach is genetically of primary in relation to the information, which operates on the combinatorial and probabilistic approaches. Also, we have answered the question why the different conceptions of information lead to identical formulas to measure it
18043 kb

SYNTHESIS AND VERIFICATION OF MULTICRITERIA SYSTEM-COGNITIVE MODEL OF THE GUARDIAN UNIVERSITY RANKING AND ITS APPLICATION FOR THE PROPER EVALUATION OF THE EFFECTIVENESS OF RUSSIAN UNIVERSITIES WITH RESPECT TO THE DIRECTION OF PREPARATION

abstract 1071503001 issue 107 pp. 1 – 62 31.03.2015 ru 476
The article is devoted to the solution of the problem which is the fact that on the one hand, the rating of Russian universities is in demand and on the other hand it hasn’t been created yet. The proposed idea of solving the problem consists in the application of domestic licensing of innovative intelligent technologies for these purposes: we have suggested using an automated system-cognitive analysis (ASC-analysis) and its software tools – the intelligent system called "Eidos". These methods are described in detail in this context. It is proposed to consider the possibility of applying these tools on the example of the Guardian University ranking. The article discusses its private criteria (indicators of universities). We specify the sources of data and the methods of their preparation for processing in "Eidos" system. In accordance with ASC-analysis methodology the article describes the installation of "Eidos", the data input into it, and the formalization of the subject area, synthesis and verification of models, their display and use to solve problems of assessment of the Guardian rating for Russian universities and research object modeling. It also discusses the prospects and ways of development of the integrated rating of Russian universities and operation of rating in adaptive mode. We have also specified the limitations of the proposed approach and the prospects of its development
288 kb

THE PROBLEMS OF IMPLEMENTATION OF MATHEMATICAL AND TOOL METHODS OF CONTROLLING

abstract 1071503070 issue 107 pp. 1007 – 1038 31.03.2015 ru 952
Statistical methods are based on the developed theory and demonstrated its usefulness in the sectors of the economy. However, the analysis of the situation in the application of statistical methods shows obvious distress, in which accumulated in our country's scientific potential is not used to the full. As practice shows, it is not enough to develop promising modern theory-based effective mathematical and instrumental methods of controlling. For using such methods in mass, it is necessary that they would be implemented. Management of innovations, i.e. innovation management, quite rightly is currently one of the most debated sections of the economy and the organization of production, of the entire economic science in general. However, the implementation of applied statistics and other statistical methods, more generally, mathematical and instrumental methods of controlling, has its own specifics. It is considered in the article. We have highlighted the developmental vulnerabilities - low scientific level of many individuals applying statistical methods, the lack of organizational structure of applied statistics as a field of applied activities and others. We regret to note that the very idea of the need to establish requirements for the methods of data analysis and project formulations such requirements remained outside the attention of those professionals who need them and were addressed. We have no adequate system of guidance for documents on concrete statistical methods performed on modern scientific level. According to the author, the desired future of applied statistics is reorganization according to the model of Metrology. We have analyzed the application of statistical methods as a specialty. The analysis of state standards on statistical methods and the causes of them blunders are given. We have discussed the status of documents for statistical methods for standardization and quality control. We discuss a new system of "Six Sigma" for implementation advanced mathematical and instrumental methods of controlling
225 kb

ECONOMETRICS FOR THE CONNROLLERS

abstract 1071503071 issue 107 pp. 1039 – 1062 31.03.2015 ru 976
Requirements for the professional training of сontrollers include, in particular, the requirements for an intelligent tool that controllers must possess. One of such tools is the econometrics. Organization of training, in particular, preparation of curricula, programs, teaching materials and textbooks, involves discussion of the scope and content of the relevant discipline. We have given the description of the econometric tools of controlling, including the courses of "Econometrics-1" and "Econometrics-2", which the Department of the IBM-2 "Economics and organization of production" is on the faculty "Engineering and Business Management" of Bauman Moscow State Technical University. We have discussed the external environment of econometrics and the necessary changes in it. For example, the course of "Probability Theory and Mathematical Statistics" is the basis for the study of econometrics. However, it has to be brought into line with modern requirements. In particular, it is necessary to consider such things as random elements with values in an arbitrary space, empirical and theoretical means in such spaces, to prove the laws of large numbers in general statements. Simultaneously with the specified extension course content is reasonable to exclude from the program methods based on those assumptions are not met in the concrete economic situations. In particular, we have to eliminate the one-sample and two-sample Student's t tests and replace them with the corresponding nonparametric tests. We do not need the "classical" and geometric probability, etc. We have given the importance of the problem of constructing integral indicators in various problems of econometrics; issues of analysis of the situation by means of a system of indicators are discussed in detail
264 kb

ECONOMETRIC TOOLS OF CONTROLLING

abstract 1071503072 issue 107 pp. 1063 – 1091 31.03.2015 ru 969
Econometrics is one of the most effective mathematical tools of controlling. The article deals with general problems of application of econometric methods in solving problems of controlling. Econometric methods - is primarily a statistical analysis of concrete economic data, of course, with the help of computers. In our country, they are still relatively little known, even though we have the most powerful scientific school in the foundations of econometrics - the probability theory. The article shows that to decide the problems of controlling is necessary to apply econometric methods. Classification of econometric tools can be carried out on various grounds: on methods, by type of data, in tasks, etc. Mass introduction of software products, including modern econometric analysis tools of concrete economic data can be regarded as one of the most effective ways to accelerate scientific and technological progress. The whole arsenal currently used econometric and statistical techniques (methods) can be divided into three streams: high econometric (statistical) technology; classical econometric (statistical) technology, low (inadequate, obsolete) econometric (statistical) technology. The main problem of modern econometrics is to ensure that the concrete econometric and statistical studies used only the first two types of technology. To get a broader representation of the use of econometric methods in the management of production organization we analyze basic textbook "Organization and planning of engineering production (production management)," prepared by the Department of "Economics and organization of production" of the Bauman Moscow State Technical University. It has more than 20 times using econometric methods and models that testify to the effectiveness of such a tool of manager as econometrics
642 kb

GEOMETRIC TURBULENCE IN GENERAL RELATIVITY

abstract 1071503078 issue 107 pp. 1170 – 1215 31.03.2015 ru 983
The article presents the simulation results of the metric of elementary particles, atoms, stars and galaxies in the general theory of relativity and Yang-Mills theory. We have shown metrics and field equations describing the transition to turbulence. The problems of a unified field theory with the turbulent fluctuations of the metric are considered. A transition from the Einstein equations to the diffusion equation and the Schrödinger equation in quantum mechanics is shown. Ther are examples of metrics in which the field equations are reduced to a single equation, it changes type depending on the equation of state. These examples can be seen as a transition to the geometric turbulence. It is shown that the field equations in general relativity can be reduced to a hyperbolic, elliptic or parabolic type. The equation of parabolic type describing the perturbations of the gravitational field on the scale of stars, galaxies and clusters of galaxies, which is a generalization of the theory of gravitation Newton-Poisson in case of Riemannian geometry, taking into account the curvature of space-time has been derived. It was found that the geometric turbulence leads to an exchange between regions of different scale. Under turbulent exchange material formed of two types of clusters, having positive and negative energy density that corresponds to the classical and quantum particle motion respectively. These results allow us to answer the question about the origin of the quantum theory
397 kb

METRIC OF ACCELERATING AND ROTATING REFERENCE SYSTEMS IN GENERAL RELATIVITY

abstract 1071503112 issue 107 pp. 1722 – 1744 31.03.2015 ru 928
Metric describing the accelerated and rotating reference system in general relativity in the case of an arbitrary dependence of acceleration and angular velocity on time has been proposed. It is established that the curvature tensor in such metrics is zero, which corresponds to movement in the flat spaces. It is shown that the motion of test bodies in the metric accelerated and rotating reference system in general relativity is similarly to the classical motion in non-inertial reference frame. Consequently, there exist a metric in general relativity, in which the Coriolis theorem and classic velocity-addition formula are true. This means that classical mechanics is accurate rather than approximate model in general relativity. A theory of potential in non-inertial reference systems in general relativity is considered. The numerical model of wave propagation in non-inertial reference frames in the case when potential depending of one, two and three spatial dimensions has been developed. It is shown in numerical experiment that the acceleration of the reference system leads to retardation effects, as well as to a violation of the symmetry of the wave front, indicating that there is local change of wave speed
.